Spaces:
AIR-Bench
/
Running on CPU Upgrade

leaderboard / src /read_evals.py
nan's picture
refactor: remove the unnecessary variables
592bb62
raw
history blame
8.63 kB
import json
import os.path
from collections import defaultdict
from dataclasses import dataclass
from typing import List
import pandas as pd
from src.benchmarks import get_safe_name, BenchmarksQA, BenchmarksLongDoc
from src.display.utils import COLS_QA, COLS_LONG_DOC
from src.display.column_names import COL_NAME_AVG, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, \
COL_NAME_RETRIEVAL_MODEL_LINK, COL_NAME_RERANKING_MODEL_LINK, COL_NAME_RANK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, \
COL_NAME_IS_ANONYMOUS
from src.display.formatting import make_clickable_model
pd.options.mode.copy_on_write = True
def calculate_mean(row):
if pd.isna(row).any():
return -1
else:
return row.mean()
@dataclass
class EvalResult:
"""
Evaluation result of a single embedding model with a specific reranking model on benchmarks over different
domains, languages, and datasets
"""
eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model]_[metric]
retrieval_model: str
reranking_model: str
results: list # results on all the benchmarks stored as dict
task: str
metric: str
timestamp: str = "" # submission timestamp
revision: str = ""
is_anonymous: bool = False
@dataclass
class FullEvalResult:
"""
Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks
"""
eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model]
retrieval_model: str
reranking_model: str
retrieval_model_link: str
reranking_model_link: str
results: List[EvalResult] # results on all the EvalResults over different tasks and metrics.
timestamp: str = ""
revision: str = ""
is_anonymous: bool = False
@classmethod
def init_from_json_file(cls, json_filepath):
"""
Initiate from the result json file for a single model.
The json file will be written only when the status is FINISHED.
"""
with open(json_filepath) as fp:
model_data = json.load(fp)
# store all the results for different metrics and tasks
result_list = []
retrieval_model_link = ""
reranking_model_link = ""
revision = ""
for item in model_data:
config = item.get("config", {})
# eval results for different metrics
results = item.get("results", [])
retrieval_model_link = config["retrieval_model_link"]
if config["reranking_model_link"] is None:
reranking_model_link = ""
else:
reranking_model_link = config["reranking_model_link"]
eval_result = EvalResult(
eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}",
retrieval_model=config["retrieval_model"],
reranking_model=config["reranking_model"],
results=results,
task=config["task"],
metric=config["metric"],
timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"),
revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"),
is_anonymous=config.get("is_anonymous", False)
)
result_list.append(eval_result)
return cls(
eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}",
retrieval_model=result_list[0].retrieval_model,
reranking_model=result_list[0].reranking_model,
retrieval_model_link=retrieval_model_link,
reranking_model_link=reranking_model_link,
results=result_list,
timestamp=result_list[0].timestamp,
revision=result_list[0].revision,
is_anonymous=result_list[0].is_anonymous
)
def to_dict(self, task='qa', metric='ndcg_at_3') -> List:
"""
Convert the results in all the EvalResults over different tasks and metrics. The output is a list of dict compatible with the dataframe UI
"""
results = defaultdict(dict)
for eval_result in self.results:
if eval_result.metric != metric:
continue
if eval_result.task != task:
continue
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = (
make_clickable_model(self.retrieval_model, self.retrieval_model_link))
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = (
make_clickable_model(self.reranking_model, self.reranking_model_link))
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
results[eval_result.eval_name][COL_NAME_REVISION] = self.revision
results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp
results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous
# print(f'result loaded: {eval_result.eval_name}')
for result in eval_result.results:
# add result for each domain, language, and dataset
domain = result["domain"]
lang = result["lang"]
dataset = result["dataset"]
value = result["value"] * 100
if dataset == 'default':
benchmark_name = f"{domain}_{lang}"
else:
benchmark_name = f"{domain}_{lang}_{dataset}"
results[eval_result.eval_name][get_safe_name(benchmark_name)] = value
return [v for v in results.values()]
def get_raw_eval_results(results_path: str) -> List[FullEvalResult]:
"""
Load the evaluation results from a json file
"""
model_result_filepaths = []
for root, dirs, files in os.walk(results_path):
if len(files) == 0:
continue
# select the latest results
for file in files:
if not (file.startswith("results") and file.endswith(".json")):
print(f'skip {file}')
continue
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# create evaluation results
try:
eval_result = FullEvalResult.init_from_json_file(model_result_filepath)
except UnicodeDecodeError as e:
print(f"loading file failed. {model_result_filepath}")
continue
print(f'file loaded: {model_result_filepath}')
timestamp = eval_result.timestamp
eval_results[timestamp] = eval_result
results = []
for k, v in eval_results.items():
try:
v.to_dict()
results.append(v)
except KeyError:
print(f"loading failed: {k}")
continue
return results
def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -> pd.DataFrame:
"""
Creates a dataframe from all the individual experiment results
"""
cols = [COL_NAME_IS_ANONYMOUS, ]
if task == "qa":
cols += COLS_QA
benchmark_cols = [t.value.col_name for t in BenchmarksQA]
elif task == "long-doc":
cols += COLS_LONG_DOC
benchmark_cols = [t.value.col_name for t in BenchmarksLongDoc]
else:
raise NotImplemented
all_data_json = []
for v in raw_data:
all_data_json += v.to_dict(task=task, metric=metric)
df = pd.DataFrame.from_records(all_data_json)
# print(f'dataframe created: {df.shape}')
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
# calculate the average score for selected benchmarks
df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
df.reset_index(inplace=True, drop=True)
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
df = df[_cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
# shorten the revision
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]
# # replace "0" with "-" for average score
# df[COL_NAME_AVG] = df[COL_NAME_AVG].replace(0, "-")
return df