Spaces:
AIR-Bench
/
Running on CPU Upgrade

leaderboard / utils.py
nan's picture
feat: add submition implementation
9f44d20
raw
history blame
5.93 kB
import json
from typing import List
import os
from datetime import datetime
from pathlib import Path
import pytz
import pandas as pd
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL
from src.leaderboard.read_evals import FullEvalResult, get_leaderboard_df
from src.envs import API, SEARCH_RESULTS_REPO, CACHE_PATH
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
return df.loc[df["Reranking Model"].isin(reranking_query)]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]
def get_default_cols(task: str, columns: list, add_fix_cols: bool=True) -> list:
if task == "qa":
cols = list(frozenset(COLS_QA).intersection(frozenset(BENCHMARK_COLS_QA)).intersection(frozenset(columns)))
elif task == "long_doc":
cols = list(frozenset(COLS_LONG_DOC).intersection(frozenset(BENCHMARK_COLS_LONG_DOC)).intersection(frozenset(columns)))
else:
raise NotImplemented
if add_fix_cols:
cols = FIXED_COLS + cols
return cols
FIXED_COLS = [
COL_NAME_RANK,
COL_NAME_RETRIEVAL_MODEL,
COL_NAME_RERANKING_MODEL,
COL_NAME_AVG,
]
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str = "qa") -> pd.DataFrame:
cols = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
selected_cols = []
for c in cols:
if task == "qa":
eval_col = BenchmarksQA[c].value
elif task == "long_doc":
eval_col = BenchmarksLongDoc[c].value
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
filtered_df = df[FIXED_COLS + selected_cols]
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="dense")
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs)
return df
def update_table_long_doc(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs, task='long_doc')
return df
def update_metric(
raw_data: List[FullEvalResult],
task: str,
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
) -> pd.DataFrame:
if task == 'qa':
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
elif task == 'long_doc':
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table_long_doc(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
def upload_file(
filepath: str, model: str, model_url: str, version: str="AIR-Bench_24.04"):
print(f"file uploaded: {filepath}")
# model = "bge-small-en-v1.5"
# version = "AIR-Bench_24.04"
if not filepath.endswith(".zip"):
print(f"file uploading aborted. wrong file type: {filepath}")
return filepath
# rename the uploaded file
input_fp = Path(filepath)
timezone = pytz.timezone('UTC')
timestamp = datetime.now(timezone).strftime('%Y%m%d%H%M%S')
output_fn = f"{timestamp}-{input_fp.name}"
input_folder_path = input_fp.parent
API.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"{version}/{model}/{output_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} to evaluate")
output_config_fn = f"{output_fn.removesuffix('.zip')}.json"
output_config = {
"model_name": f"{model}",
"model_url": f"{model_url}",
"version": f"{version}"
}
with open(input_folder_path / output_config_fn, "w") as f:
json.dump(output_config, f, ensure_ascii=False)
API.upload_file(
path_or_fileobj=input_folder_path / output_config_fn,
path_in_repo= f"{version}/{model}/{output_config_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} config")
return filepath