Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.about import ( | |
INTRODUCTION_TEXT, | |
TITLE | |
) | |
from src.benchmarks import ( | |
QABenchmarks, | |
LongDocBenchmarks | |
) | |
from src.display.css_html_js import custom_css | |
from src.envs import ( | |
API, | |
EVAL_RESULTS_PATH, | |
REPO_ID, DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC, METRIC_LIST, LATEST_BENCHMARK_VERSION, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, BM25_LINK | |
) | |
from src.loaders import ( | |
load_eval_results | |
) | |
from src.utils import ( | |
update_metric, | |
set_listeners, | |
reset_rank, | |
remove_html | |
) | |
from src.display.gradio_formatting import ( | |
get_version_dropdown, | |
get_search_bar, | |
get_reranking_dropdown, | |
get_noreranking_dropdown, | |
get_metric_dropdown, | |
get_domain_dropdown, | |
get_language_dropdown, | |
get_anonymous_checkbox, | |
get_revision_and_ts_checkbox, | |
get_leaderboard_table | |
) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
# try: | |
# snapshot_download( | |
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
# token=TOKEN | |
# ) | |
# except Exception as e: | |
# print(f'failed to download') | |
# restart_space() | |
global data | |
data = load_eval_results(EVAL_RESULTS_PATH) | |
global datastore | |
datastore = data[LATEST_BENCHMARK_VERSION] | |
def update_metric_qa( | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
show_anonymous: bool, | |
show_revision_and_timestamp: bool, | |
): | |
return update_metric(datastore, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp) | |
def update_metric_long_doc( | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
show_anonymous: bool, | |
show_revision_and_timestamp, | |
): | |
return update_metric(datastore, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp) | |
def update_datastore(version): | |
global datastore | |
global data | |
datastore = data[version] | |
selected_domains = get_domain_dropdown(QABenchmarks[datastore.slug]) | |
selected_langs = get_language_dropdown(QABenchmarks[datastore.slug]) | |
selected_rerankings = get_reranking_dropdown(datastore.reranking_models) | |
leaderboard_table = get_leaderboard_table( | |
datastore.raw_df_qa, datastore.types_qa) | |
hidden_leaderboard_table_for_search = get_leaderboard_table( | |
datastore.raw_df_qa, datastore.types_qa, visible=False) | |
return selected_domains, selected_langs, selected_rerankings, leaderboard_table, hidden_leaderboard_table_for_search | |
# DOMAIN_COLS_LONG_DOC = list(frozenset([c.value.domain for c in list(LongDocBenchmarks)])) | |
# LANG_COLS_LONG_DOC = list(frozenset([c.value.lang for c in list(LongDocBenchmarks)])) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("Results", elem_id="results-tab-table"): | |
with gr.Row(): | |
selected_version = get_version_dropdown() | |
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(min_width=320): | |
# select domain | |
with gr.Row(): | |
selected_domains = get_domain_dropdown(QABenchmarks[datastore.slug]) | |
# select language | |
with gr.Row(): | |
selected_langs = get_language_dropdown(QABenchmarks[datastore.slug]) | |
with gr.Column(): | |
# select the metric | |
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA) | |
with gr.Row(): | |
show_anonymous = get_anonymous_checkbox() | |
with gr.Row(): | |
show_revision_and_timestamp = get_revision_and_ts_checkbox() | |
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs: | |
with gr.TabItem("Retrieval + Reranking", id=10): | |
with gr.Row(): | |
# search retrieval models | |
with gr.Column(): | |
search_bar = get_search_bar() | |
# select reranking models | |
with gr.Column(): | |
selected_rerankings = get_reranking_dropdown(datastore.reranking_models) | |
# shown_table | |
lb_table = get_leaderboard_table( | |
datastore.leaderboard_df_qa, datastore.types_qa) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_lb_table = get_leaderboard_table( | |
datastore.raw_df_qa, datastore.types_qa, visible=False) | |
selected_version.change( | |
update_datastore, | |
[selected_version,], | |
[selected_domains, selected_langs, selected_rerankings, lb_table, hidden_lb_table] | |
) | |
set_listeners( | |
"qa", | |
lb_table, | |
hidden_lb_table, | |
search_bar, | |
selected_version, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
# set metric listener | |
selected_metric.change( | |
update_metric_qa, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
show_anonymous, | |
show_revision_and_timestamp, | |
], | |
lb_table, | |
queue=True | |
) | |
with gr.TabItem("Retrieval Only", id=11): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
search_bar_retriever = get_search_bar() | |
with gr.Column(scale=1): | |
selected_noreranker = get_noreranking_dropdown() | |
lb_df_retriever = datastore.leaderboard_df_qa[datastore.leaderboard_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"] | |
lb_df_retriever = reset_rank(lb_df_retriever) | |
lb_table_retriever = get_leaderboard_table(lb_df_retriever, datastore.types_qa) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_lb_df_retriever = datastore.raw_df_qa[datastore.raw_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"] | |
hidden_lb_df_retriever = reset_rank(hidden_lb_df_retriever) | |
hidden_lb_table_retriever = get_leaderboard_table(hidden_lb_df_retriever, datastore.types_qa, visible=False) | |
selected_version.change( | |
update_datastore, | |
[selected_version,], | |
[selected_domains, selected_langs, selected_rerankings, lb_table_retriever, hidden_lb_table_retriever] | |
) | |
set_listeners( | |
"qa", | |
lb_table_retriever, | |
hidden_lb_table_retriever, | |
search_bar_retriever, | |
selected_version, | |
selected_domains, | |
selected_langs, | |
selected_noreranker, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
# set metric listener | |
selected_metric.change( | |
update_metric_qa, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_noreranker, | |
search_bar_retriever, | |
show_anonymous, | |
show_revision_and_timestamp, | |
], | |
lb_table_retriever, | |
queue=True | |
) | |
with gr.TabItem("Reranking Only", id=12): | |
lb_df_reranker = datastore.leaderboard_df_qa[datastore.leaderboard_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK] | |
lb_df_reranker = reset_rank(lb_df_reranker) | |
reranking_models_reranker = lb_df_reranker[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
selected_rerankings_reranker = get_reranking_dropdown(reranking_models_reranker) | |
with gr.Column(scale=1): | |
search_bar_reranker = gr.Textbox(show_label=False, visible=False) | |
lb_table_reranker = get_leaderboard_table(lb_df_reranker, datastore.types_qa) | |
hidden_lb_df_reranker = datastore.raw_df_qa[datastore.raw_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK] | |
hidden_lb_df_reranker = reset_rank(hidden_lb_df_reranker) | |
hidden_lb_table_reranker = get_leaderboard_table( | |
hidden_lb_df_reranker, datastore.types_qa, visible=False | |
) | |
selected_version.change( | |
update_datastore, | |
[selected_version,], | |
[selected_domains, selected_langs, selected_rerankings_reranker, lb_table_reranker, hidden_lb_table_reranker] | |
) | |
set_listeners( | |
"qa", | |
lb_table_reranker, | |
hidden_lb_table_reranker, | |
search_bar_reranker, | |
selected_version, | |
selected_domains, | |
selected_langs, | |
selected_rerankings_reranker, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
# set metric listener | |
selected_metric.change( | |
update_metric_qa, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_rerankings_reranker, | |
search_bar_reranker, | |
show_anonymous, | |
show_revision_and_timestamp, | |
], | |
lb_table_reranker, | |
queue=True | |
) | |
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1): | |
with gr.Row(): | |
with gr.Column(min_width=320): | |
# select domain | |
with gr.Row(): | |
selected_domains = get_domain_dropdown(LongDocBenchmarks[datastore.slug]) | |
# select language | |
with gr.Row(): | |
selected_langs = get_language_dropdown(LongDocBenchmarks[datastore.slug]) | |
with gr.Column(): | |
# select the metric | |
with gr.Row(): | |
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_LONG_DOC) | |
with gr.Row(): | |
show_anonymous = get_anonymous_checkbox() | |
with gr.Row(): | |
show_revision_and_timestamp = get_revision_and_ts_checkbox() | |
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs: | |
with gr.TabItem("Retrieval + Reranking", id=20): | |
with gr.Row(): | |
with gr.Column(): | |
search_bar = get_search_bar() | |
# select reranking model | |
with gr.Column(): | |
selected_rerankings = get_reranking_dropdown(datastore.reranking_models) | |
lb_table = get_leaderboard_table( | |
datastore.leaderboard_df_long_doc, datastore.types_long_doc | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_lb_table = get_leaderboard_table( | |
datastore.raw_df_long_doc, datastore.types_long_doc, visible=False | |
) | |
selected_version.change( | |
update_datastore, | |
[selected_version,], | |
[selected_domains, selected_langs, selected_rerankings, lb_table, hidden_lb_table] | |
) | |
set_listeners( | |
"long-doc", | |
lb_table, | |
hidden_lb_table, | |
search_bar, | |
selected_version, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
# set metric listener | |
selected_metric.change( | |
update_metric_long_doc, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
show_anonymous, | |
show_revision_and_timestamp | |
], | |
lb_table, | |
queue=True | |
) | |
""" | |
with gr.TabItem("Retrieval Only", id=21): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
search_bar_retriever = get_search_bar() | |
with gr.Column(scale=1): | |
selected_noreranker = get_noreranking_dropdown() | |
lb_df_retriever_long_doc = data["AIR-Bench_24.04"].leaderboard_df_long_doc[ | |
data["AIR-Bench_24.04"].leaderboard_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker" | |
] | |
lb_df_retriever_long_doc = reset_rank(lb_df_retriever_long_doc) | |
hidden_lb_db_retriever_long_doc = data["AIR-Bench_24.04"].raw_df_long_doc[ | |
data["AIR-Bench_24.04"].raw_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker" | |
] | |
hidden_lb_db_retriever_long_doc = reset_rank(hidden_lb_db_retriever_long_doc) | |
lb_table_retriever_long_doc = get_leaderboard_table( | |
lb_df_retriever_long_doc, data["AIR-Bench_24.04"].types_long_doc) | |
hidden_lb_table_retriever_long_doc = get_leaderboard_table( | |
hidden_lb_db_retriever_long_doc, data["AIR-Bench_24.04"].types_long_doc, visible=False | |
) | |
set_listeners( | |
"long-doc", | |
lb_table_retriever_long_doc, | |
hidden_lb_table_retriever_long_doc, | |
search_bar_retriever, | |
selected_domains, | |
selected_langs, | |
selected_noreranker, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
selected_metric.change( | |
update_metric_long_doc, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_noreranker, | |
search_bar_retriever, | |
show_anonymous, | |
show_revision_and_timestamp, | |
], | |
lb_table_retriever_long_doc, | |
queue=True | |
) | |
with gr.TabItem("Reranking Only", id=22): | |
lb_df_reranker_ldoc = data["AIR-Bench_24.04"].leaderboard_df_long_doc[ | |
data["AIR-Bench_24.04"].leaderboard_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK | |
] | |
lb_df_reranker_ldoc = reset_rank(lb_df_reranker_ldoc) | |
reranking_models_reranker_ldoc = lb_df_reranker_ldoc[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
selected_rerankings_reranker_ldoc = get_reranking_dropdown(reranking_models_reranker_ldoc) | |
with gr.Column(scale=1): | |
search_bar_reranker_ldoc = gr.Textbox(show_label=False, visible=False) | |
lb_table_reranker_ldoc = get_leaderboard_table(lb_df_reranker_ldoc, data["AIR-Bench_24.04"].types_long_doc) | |
hidden_lb_df_reranker_ldoc = data["AIR-Bench_24.04"].raw_df_long_doc[data["AIR-Bench_24.04"].raw_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK] | |
hidden_lb_df_reranker_ldoc = reset_rank(hidden_lb_df_reranker_ldoc) | |
hidden_lb_table_reranker_ldoc = get_leaderboard_table( | |
hidden_lb_df_reranker_ldoc, data["AIR-Bench_24.04"].types_long_doc, visible=False | |
) | |
set_listeners( | |
"long-doc", | |
lb_table_reranker_ldoc, | |
hidden_lb_table_reranker_ldoc, | |
search_bar_reranker_ldoc, | |
selected_domains, | |
selected_langs, | |
selected_rerankings_reranker_ldoc, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
selected_metric.change( | |
update_metric_long_doc, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_rerankings_reranker_ldoc, | |
search_bar_reranker_ldoc, | |
show_anonymous, | |
show_revision_and_timestamp, | |
], | |
lb_table_reranker_ldoc, | |
queue=True | |
) | |
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name = gr.Textbox(label="Retrieval Method name") | |
with gr.Column(): | |
model_url = gr.Textbox(label="Retrieval Method URL") | |
with gr.Row(): | |
with gr.Column(): | |
reranking_model_name = gr.Textbox( | |
label="Reranking Model name", | |
info="Optional", | |
value="NoReranker" | |
) | |
with gr.Column(): | |
reranking_model_url = gr.Textbox( | |
label="Reranking Model URL", | |
info="Optional", | |
value="" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
benchmark_version = gr.Dropdown( | |
BENCHMARK_VERSION_LIST, | |
value=LATEST_BENCHMARK_VERSION, | |
interactive=True, | |
label="AIR-Bench Version") | |
with gr.Row(): | |
upload_button = gr.UploadButton("Click to upload search results", file_count="single") | |
with gr.Row(): | |
file_output = gr.File() | |
with gr.Row(): | |
is_anonymous = gr.Checkbox( | |
label="Nope. I want to submit anonymously 🥷", | |
value=False, | |
info="Do you want to shown on the leaderboard by default?") | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
with gr.Row(): | |
submission_result = gr.Markdown() | |
upload_button.upload( | |
upload_file, | |
[ | |
upload_button, | |
], | |
file_output) | |
submit_button.click( | |
submit_results, | |
[ | |
file_output, | |
model_name, | |
model_url, | |
reranking_model_name, | |
reranking_model_url, | |
benchmark_version, | |
is_anonymous | |
], | |
submission_result, | |
show_progress="hidden" | |
) | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): | |
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text") | |
""" | |
if __name__ == "__main__": | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40) | |
demo.launch() | |