Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass, make_dataclass | |
from src.envs import ( | |
COL_NAME_AVG, | |
COL_NAME_IS_ANONYMOUS, | |
COL_NAME_RANK, | |
COL_NAME_RERANKING_MODEL, | |
COL_NAME_RERANKING_MODEL_LINK, | |
COL_NAME_RETRIEVAL_MODEL, | |
COL_NAME_RETRIEVAL_MODEL_LINK, | |
COL_NAME_REVISION, | |
COL_NAME_TIMESTAMP, | |
) | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modification is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
def get_default_auto_eval_column_dict(): | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent(COL_NAME_RANK, "number", True)]) | |
auto_eval_column_dict.append( | |
[ | |
"retrieval_model", | |
ColumnContent, | |
ColumnContent(COL_NAME_RETRIEVAL_MODEL, "markdown", True, hidden=False, never_hidden=True), | |
] | |
) | |
auto_eval_column_dict.append( | |
[ | |
"reranking_model", | |
ColumnContent, | |
ColumnContent(COL_NAME_RERANKING_MODEL, "markdown", True, hidden=False, never_hidden=True), | |
] | |
) | |
auto_eval_column_dict.append( | |
["revision", ColumnContent, ColumnContent(COL_NAME_REVISION, "markdown", True, never_hidden=True)] | |
) | |
auto_eval_column_dict.append( | |
["timestamp", ColumnContent, ColumnContent(COL_NAME_TIMESTAMP, "date", True, never_hidden=True)] | |
) | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(COL_NAME_AVG, "number", True)]) | |
auto_eval_column_dict.append( | |
[ | |
"retrieval_model_link", | |
ColumnContent, | |
ColumnContent(COL_NAME_RETRIEVAL_MODEL_LINK, "markdown", False, hidden=True, never_hidden=False), | |
] | |
) | |
auto_eval_column_dict.append( | |
[ | |
"reranking_model_link", | |
ColumnContent, | |
ColumnContent(COL_NAME_RERANKING_MODEL_LINK, "markdown", False, hidden=True, never_hidden=False), | |
] | |
) | |
auto_eval_column_dict.append( | |
["is_anonymous", ColumnContent, ColumnContent(COL_NAME_IS_ANONYMOUS, "bool", False, hidden=True)] | |
) | |
return auto_eval_column_dict | |
def make_autoevalcolumn(cls_name, benchmarks): | |
auto_eval_column_dict = get_default_auto_eval_column_dict() | |
# Leaderboard columns | |
for benchmark in list(benchmarks.value): | |
auto_eval_column_dict.append( | |
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)] | |
) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
return make_dataclass(cls_name, auto_eval_column_dict, frozen=True) | |
def get_default_col_names_and_types(benchmarks): | |
AutoEvalColumn = make_autoevalcolumn("AutoEvalColumn", benchmarks) | |
col_names = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
col_types = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
return col_names, col_types | |
def get_fixed_col_names_and_types(): | |
fixed_cols = get_default_auto_eval_column_dict()[:-3] | |
return [c.name for _, _, c in fixed_cols], [c.type for _, _, c in fixed_cols] | |