Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
refactor: refactor the benchmarks
Browse files- app.py +14 -86
- src/benchmarks.py +12 -21
- src/display/gradio_formatting.py +1 -1
- src/display/utils.py +1 -1
- src/{read_evals.py → loaders.py} +47 -49
- src/utils.py +49 -4
- tests/src/test_read_evals.py +5 -4
app.py
CHANGED
@@ -1,46 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
from apscheduler.schedulers.background import BackgroundScheduler
|
3 |
-
from huggingface_hub import snapshot_download
|
4 |
|
5 |
from src.about import (
|
6 |
INTRODUCTION_TEXT,
|
7 |
-
|
8 |
-
TITLE,
|
9 |
-
EVALUATION_QUEUE_TEXT
|
10 |
)
|
11 |
from src.benchmarks import (
|
12 |
-
|
13 |
-
|
14 |
-
DOMAIN_COLS_LONG_DOC,
|
15 |
-
LANG_COLS_LONG_DOC,
|
16 |
METRIC_LIST,
|
17 |
DEFAULT_METRIC_QA,
|
18 |
DEFAULT_METRIC_LONG_DOC
|
19 |
)
|
20 |
from src.display.css_html_js import custom_css
|
21 |
-
from src.display.column_names import COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_REVISION, \
|
22 |
-
COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
23 |
from src.envs import (
|
24 |
API,
|
25 |
EVAL_RESULTS_PATH,
|
26 |
-
REPO_ID
|
27 |
-
RESULTS_REPO,
|
28 |
-
TOKEN,
|
29 |
-
BM25_LINK,
|
30 |
-
BENCHMARK_VERSION_LIST,
|
31 |
-
LATEST_BENCHMARK_VERSION
|
32 |
)
|
33 |
-
from src.
|
34 |
-
|
35 |
-
get_leaderboard_df
|
36 |
)
|
37 |
from src.utils import (
|
38 |
-
update_metric
|
39 |
-
upload_file,
|
40 |
-
get_default_cols,
|
41 |
-
submit_results,
|
42 |
-
reset_rank,
|
43 |
-
remove_html
|
44 |
)
|
45 |
from src.display.gradio_formatting import (
|
46 |
get_version_dropdown,
|
@@ -51,8 +33,7 @@ from src.display.gradio_formatting import (
|
|
51 |
get_language_dropdown,
|
52 |
get_anonymous_checkbox,
|
53 |
get_revision_and_ts_checkbox,
|
54 |
-
get_leaderboard_table
|
55 |
-
get_noreranking_dropdown
|
56 |
)
|
57 |
from src.display.gradio_listener import set_listeners
|
58 |
|
@@ -69,65 +50,6 @@ def restart_space():
|
|
69 |
# print(f'failed to download')
|
70 |
# restart_space()
|
71 |
|
72 |
-
from dataclasses import dataclass
|
73 |
-
import pandas as pd
|
74 |
-
from typing import Optional
|
75 |
-
|
76 |
-
|
77 |
-
@dataclass
|
78 |
-
class LeaderboardDataStore:
|
79 |
-
raw_data: Optional[list]
|
80 |
-
raw_df_qa: Optional[pd.DataFrame]
|
81 |
-
raw_df_long_doc: Optional[pd.DataFrame]
|
82 |
-
leaderboard_df_qa: Optional[pd.DataFrame]
|
83 |
-
leaderboard_df_long_doc: Optional[pd.DataFrame]
|
84 |
-
reranking_models: Optional[list]
|
85 |
-
types_qa: Optional[list]
|
86 |
-
types_long_doc: Optional[list]
|
87 |
-
|
88 |
-
|
89 |
-
def load_leaderboard_data(file_path) -> LeaderboardDataStore:
|
90 |
-
lb_data_store = LeaderboardDataStore(None, None, None, None, None, None, None, None)
|
91 |
-
lb_data_store.raw_data = get_raw_eval_results(file_path)
|
92 |
-
print(f'raw data: {len(lb_data_store.raw_data)}')
|
93 |
-
|
94 |
-
lb_data_store.raw_df_qa = get_leaderboard_df(
|
95 |
-
lb_data_store.raw_data, task='qa', metric=DEFAULT_METRIC_QA)
|
96 |
-
lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy()
|
97 |
-
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
|
98 |
-
print(f'QA data loaded: {lb_data_store.raw_df_qa.shape}')
|
99 |
-
shown_columns_qa, types_qa = get_default_cols(
|
100 |
-
'qa', lb_data_store.leaderboard_df_qa.columns, add_fix_cols=True)
|
101 |
-
lb_data_store.types_qa = types_qa
|
102 |
-
lb_data_store.leaderboard_df_qa = \
|
103 |
-
lb_data_store.leaderboard_df_qa[~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
|
104 |
-
lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
105 |
-
|
106 |
-
lb_data_store.raw_df_long_doc = get_leaderboard_df(
|
107 |
-
lb_data_store.raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
|
108 |
-
print(f'Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}')
|
109 |
-
lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy()
|
110 |
-
shown_columns_long_doc, types_long_doc = get_default_cols(
|
111 |
-
'long-doc', lb_data_store.leaderboard_df_long_doc.columns, add_fix_cols=True)
|
112 |
-
lb_data_store.types_long_doc = types_long_doc
|
113 |
-
lb_data_store.leaderboard_df_long_doc = \
|
114 |
-
lb_data_store.leaderboard_df_long_doc[~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][
|
115 |
-
shown_columns_long_doc]
|
116 |
-
lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
117 |
-
|
118 |
-
lb_data_store.reranking_models = sorted(
|
119 |
-
list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data])))
|
120 |
-
return lb_data_store
|
121 |
-
|
122 |
-
|
123 |
-
def load_eval_results(file_path: str):
|
124 |
-
output = {}
|
125 |
-
versions = ("AIR-Bench_24.04",)
|
126 |
-
for version in versions:
|
127 |
-
fn = f"{file_path}/{version}"
|
128 |
-
output[version] = load_leaderboard_data(fn)
|
129 |
-
return output
|
130 |
-
|
131 |
|
132 |
data = load_eval_results(EVAL_RESULTS_PATH)
|
133 |
|
@@ -157,6 +79,12 @@ def update_metric_long_doc(
|
|
157 |
return update_metric(data["AIR-Bench_24.04"].raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
|
158 |
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
demo = gr.Blocks(css=custom_css)
|
161 |
|
162 |
with demo:
|
|
|
1 |
import gradio as gr
|
2 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
3 |
|
4 |
from src.about import (
|
5 |
INTRODUCTION_TEXT,
|
6 |
+
TITLE
|
|
|
|
|
7 |
)
|
8 |
from src.benchmarks import (
|
9 |
+
qa_benchmark_dict,
|
10 |
+
long_doc_benchmark_dict,
|
|
|
|
|
11 |
METRIC_LIST,
|
12 |
DEFAULT_METRIC_QA,
|
13 |
DEFAULT_METRIC_LONG_DOC
|
14 |
)
|
15 |
from src.display.css_html_js import custom_css
|
|
|
|
|
16 |
from src.envs import (
|
17 |
API,
|
18 |
EVAL_RESULTS_PATH,
|
19 |
+
REPO_ID
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
+
from src.loaders import (
|
22 |
+
load_eval_results
|
|
|
23 |
)
|
24 |
from src.utils import (
|
25 |
+
update_metric
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
from src.display.gradio_formatting import (
|
28 |
get_version_dropdown,
|
|
|
33 |
get_language_dropdown,
|
34 |
get_anonymous_checkbox,
|
35 |
get_revision_and_ts_checkbox,
|
36 |
+
get_leaderboard_table
|
|
|
37 |
)
|
38 |
from src.display.gradio_listener import set_listeners
|
39 |
|
|
|
50 |
# print(f'failed to download')
|
51 |
# restart_space()
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
data = load_eval_results(EVAL_RESULTS_PATH)
|
55 |
|
|
|
79 |
return update_metric(data["AIR-Bench_24.04"].raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
|
80 |
|
81 |
|
82 |
+
DOMAIN_COLS_QA = list(frozenset([c.domain for c in qa_benchmark_dict.values()]))
|
83 |
+
LANG_COLS_QA = list(frozenset([c.lang for c in qa_benchmark_dict.values()]))
|
84 |
+
|
85 |
+
DOMAIN_COLS_LONG_DOC = list(frozenset([c.domain for c in long_doc_benchmark_dict.values()]))
|
86 |
+
LANG_COLS_LONG_DOC = list(frozenset([c.lang for c in long_doc_benchmark_dict.values()]))
|
87 |
+
|
88 |
demo = gr.Blocks(css=custom_css)
|
89 |
|
90 |
with demo:
|
src/benchmarks.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
-
from air_benchmark.tasks.tasks import BenchmarkTable
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
"""Get RFC 1123 compatible safe name"""
|
8 |
-
name = name.replace('-', '_')
|
9 |
-
return ''.join(
|
10 |
-
character.lower()
|
11 |
-
for character in name
|
12 |
-
if (character.isalnum() or character == '_'))
|
13 |
|
|
|
|
|
14 |
|
15 |
METRIC_LIST = [
|
16 |
"ndcg_at_1",
|
@@ -46,6 +40,15 @@ METRIC_LIST = [
|
|
46 |
]
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@dataclass
|
50 |
class Benchmark:
|
51 |
name: str # [domain]_[language]_[metric], task_key in the json file,
|
@@ -78,15 +81,3 @@ for task, domain_dict in BenchmarkTable['AIR-Bench_24.04'].items():
|
|
78 |
|
79 |
BenchmarksQA = Enum('BenchmarksQA', qa_benchmark_dict)
|
80 |
BenchmarksLongDoc = Enum('BenchmarksLongDoc', long_doc_benchmark_dict)
|
81 |
-
|
82 |
-
BENCHMARK_COLS_QA = [c.col_name for c in qa_benchmark_dict.values()]
|
83 |
-
BENCHMARK_COLS_LONG_DOC = [c.col_name for c in long_doc_benchmark_dict.values()]
|
84 |
-
|
85 |
-
DOMAIN_COLS_QA = list(frozenset([c.domain for c in qa_benchmark_dict.values()]))
|
86 |
-
LANG_COLS_QA = list(frozenset([c.lang for c in qa_benchmark_dict.values()]))
|
87 |
-
|
88 |
-
DOMAIN_COLS_LONG_DOC = list(frozenset([c.domain for c in long_doc_benchmark_dict.values()]))
|
89 |
-
LANG_COLS_LONG_DOC = list(frozenset([c.lang for c in long_doc_benchmark_dict.values()]))
|
90 |
-
|
91 |
-
DEFAULT_METRIC_QA = "ndcg_at_10"
|
92 |
-
DEFAULT_METRIC_LONG_DOC = "recall_at_10"
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
|
|
|
|
3 |
|
4 |
+
from air_benchmark.tasks.tasks import BenchmarkTable
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
DEFAULT_METRIC_QA = "ndcg_at_10"
|
7 |
+
DEFAULT_METRIC_LONG_DOC = "recall_at_10"
|
8 |
|
9 |
METRIC_LIST = [
|
10 |
"ndcg_at_1",
|
|
|
40 |
]
|
41 |
|
42 |
|
43 |
+
def get_safe_name(name: str):
|
44 |
+
"""Get RFC 1123 compatible safe name"""
|
45 |
+
name = name.replace('-', '_')
|
46 |
+
return ''.join(
|
47 |
+
character.lower()
|
48 |
+
for character in name
|
49 |
+
if (character.isalnum() or character == '_'))
|
50 |
+
|
51 |
+
|
52 |
@dataclass
|
53 |
class Benchmark:
|
54 |
name: str # [domain]_[language]_[metric], task_key in the json file,
|
|
|
81 |
|
82 |
BenchmarksQA = Enum('BenchmarksQA', qa_benchmark_dict)
|
83 |
BenchmarksLongDoc = Enum('BenchmarksLongDoc', long_doc_benchmark_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/gradio_formatting.py
CHANGED
@@ -64,7 +64,7 @@ def get_domain_dropdown(domain_list, default_domains):
|
|
64 |
def get_language_dropdown(language_list, default_languages):
|
65 |
return gr.Dropdown(
|
66 |
choices=language_list,
|
67 |
-
value=
|
68 |
label="Select the languages",
|
69 |
multiselect=True,
|
70 |
interactive=True
|
|
|
64 |
def get_language_dropdown(language_list, default_languages):
|
65 |
return gr.Dropdown(
|
66 |
choices=language_list,
|
67 |
+
value=default_languages,
|
68 |
label="Select the languages",
|
69 |
multiselect=True,
|
70 |
interactive=True
|
src/display/utils.py
CHANGED
@@ -57,7 +57,7 @@ def get_default_auto_eval_column_dict():
|
|
57 |
|
58 |
def make_autoevalcolumn(cls_name="BenchmarksQA", benchmarks=BenchmarksQA):
|
59 |
auto_eval_column_dict = get_default_auto_eval_column_dict()
|
60 |
-
|
61 |
for benchmark in benchmarks:
|
62 |
auto_eval_column_dict.append(
|
63 |
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)]
|
|
|
57 |
|
58 |
def make_autoevalcolumn(cls_name="BenchmarksQA", benchmarks=BenchmarksQA):
|
59 |
auto_eval_column_dict = get_default_auto_eval_column_dict()
|
60 |
+
# Leaderboard columns
|
61 |
for benchmark in benchmarks:
|
62 |
auto_eval_column_dict.append(
|
63 |
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)]
|
src/{read_evals.py → loaders.py}
RENAMED
@@ -3,23 +3,18 @@ from typing import List
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
-
from src.benchmarks import
|
7 |
-
from src.display.
|
8 |
-
|
9 |
|
10 |
-
from src.models import FullEvalResult
|
|
|
11 |
|
12 |
pd.options.mode.copy_on_write = True
|
13 |
|
14 |
|
15 |
-
def calculate_mean(row):
|
16 |
-
if pd.isna(row).any():
|
17 |
-
return -1
|
18 |
-
else:
|
19 |
-
return row.mean()
|
20 |
|
21 |
-
|
22 |
-
def get_raw_eval_results(results_path: str) -> List[FullEvalResult]:
|
23 |
"""
|
24 |
Load the evaluation results from a json file
|
25 |
"""
|
@@ -58,41 +53,44 @@ def get_raw_eval_results(results_path: str) -> List[FullEvalResult]:
|
|
58 |
return results
|
59 |
|
60 |
|
61 |
-
def
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from src.benchmarks import DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC
|
7 |
+
from src.display.column_names import COL_NAME_REVISION, COL_NAME_IS_ANONYMOUS, \
|
8 |
+
COL_NAME_TIMESTAMP
|
9 |
|
10 |
+
from src.models import FullEvalResult, LeaderboardDataStore
|
11 |
+
from src.utils import get_default_cols, get_leaderboard_df
|
12 |
|
13 |
pd.options.mode.copy_on_write = True
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def load_raw_eval_results(results_path: str) -> List[FullEvalResult]:
|
|
|
18 |
"""
|
19 |
Load the evaluation results from a json file
|
20 |
"""
|
|
|
53 |
return results
|
54 |
|
55 |
|
56 |
+
def load_leaderboard_datastore(file_path) -> LeaderboardDataStore:
|
57 |
+
lb_data_store = LeaderboardDataStore(None, None, None, None, None, None, None, None)
|
58 |
+
lb_data_store.raw_data = load_raw_eval_results(file_path)
|
59 |
+
print(f'raw data: {len(lb_data_store.raw_data)}')
|
60 |
+
|
61 |
+
lb_data_store.raw_df_qa = get_leaderboard_df(
|
62 |
+
lb_data_store.raw_data, task='qa', metric=DEFAULT_METRIC_QA)
|
63 |
+
lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy()
|
64 |
+
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
|
65 |
+
print(f'QA data loaded: {lb_data_store.raw_df_qa.shape}')
|
66 |
+
shown_columns_qa, types_qa = get_default_cols(
|
67 |
+
'qa', lb_data_store.leaderboard_df_qa.columns, add_fix_cols=True)
|
68 |
+
lb_data_store.types_qa = types_qa
|
69 |
+
lb_data_store.leaderboard_df_qa = \
|
70 |
+
lb_data_store.leaderboard_df_qa[~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
|
71 |
+
lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
72 |
+
|
73 |
+
lb_data_store.raw_df_long_doc = get_leaderboard_df(
|
74 |
+
lb_data_store.raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
|
75 |
+
print(f'Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}')
|
76 |
+
lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy()
|
77 |
+
shown_columns_long_doc, types_long_doc = get_default_cols(
|
78 |
+
'long-doc', lb_data_store.leaderboard_df_long_doc.columns, add_fix_cols=True)
|
79 |
+
lb_data_store.types_long_doc = types_long_doc
|
80 |
+
lb_data_store.leaderboard_df_long_doc = \
|
81 |
+
lb_data_store.leaderboard_df_long_doc[~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][
|
82 |
+
shown_columns_long_doc]
|
83 |
+
lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
84 |
+
|
85 |
+
lb_data_store.reranking_models = sorted(
|
86 |
+
list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data])))
|
87 |
+
return lb_data_store
|
88 |
+
|
89 |
+
|
90 |
+
def load_eval_results(file_path: str):
|
91 |
+
output = {}
|
92 |
+
versions = ("AIR-Bench_24.04",)
|
93 |
+
for version in versions:
|
94 |
+
fn = f"{file_path}/{version}"
|
95 |
+
output[version] = load_leaderboard_datastore(fn)
|
96 |
+
return output
|
src/utils.py
CHANGED
@@ -6,18 +6,23 @@ from typing import List
|
|
6 |
|
7 |
import pandas as pd
|
8 |
|
9 |
-
from src.benchmarks import
|
10 |
from src.display.formatting import styled_message, styled_error
|
11 |
from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, get_default_auto_eval_column_dict
|
12 |
from src.display.column_names import COL_NAME_AVG, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RANK, \
|
13 |
COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
14 |
from src.envs import API, SEARCH_RESULTS_REPO, LATEST_BENCHMARK_VERSION
|
15 |
-
from src.read_evals import get_leaderboard_df, calculate_mean
|
16 |
from src.models import FullEvalResult
|
17 |
|
18 |
import re
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def remove_html(input_str):
|
22 |
# Regular expression for finding HTML tags
|
23 |
clean = re.sub(r'<.*?>', '', input_str)
|
@@ -63,11 +68,11 @@ def get_default_cols(task: str, columns: list=[], add_fix_cols: bool=True) -> li
|
|
63 |
if task == "qa":
|
64 |
cols_list = COLS_QA
|
65 |
types_list = TYPES_QA
|
66 |
-
benchmark_list =
|
67 |
elif task == "long-doc":
|
68 |
cols_list = COLS_LONG_DOC
|
69 |
types_list = TYPES_LONG_DOC
|
70 |
-
benchmark_list =
|
71 |
else:
|
72 |
raise NotImplemented
|
73 |
for col_name, col_type in zip(cols_list, types_list):
|
@@ -318,3 +323,43 @@ def submit_results(
|
|
318 |
def reset_rank(df):
|
319 |
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
320 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import pandas as pd
|
8 |
|
9 |
+
from src.benchmarks import qa_benchmark_dict, long_doc_benchmark_dict, BenchmarksQA, BenchmarksLongDoc
|
10 |
from src.display.formatting import styled_message, styled_error
|
11 |
from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, get_default_auto_eval_column_dict
|
12 |
from src.display.column_names import COL_NAME_AVG, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RANK, \
|
13 |
COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
14 |
from src.envs import API, SEARCH_RESULTS_REPO, LATEST_BENCHMARK_VERSION
|
|
|
15 |
from src.models import FullEvalResult
|
16 |
|
17 |
import re
|
18 |
|
19 |
|
20 |
+
def calculate_mean(row):
|
21 |
+
if pd.isna(row).any():
|
22 |
+
return -1
|
23 |
+
else:
|
24 |
+
return row.mean()
|
25 |
+
|
26 |
def remove_html(input_str):
|
27 |
# Regular expression for finding HTML tags
|
28 |
clean = re.sub(r'<.*?>', '', input_str)
|
|
|
68 |
if task == "qa":
|
69 |
cols_list = COLS_QA
|
70 |
types_list = TYPES_QA
|
71 |
+
benchmark_list = [c.col_name for c in qa_benchmark_dict.values()]
|
72 |
elif task == "long-doc":
|
73 |
cols_list = COLS_LONG_DOC
|
74 |
types_list = TYPES_LONG_DOC
|
75 |
+
benchmark_list = [c.col_name for c in long_doc_benchmark_dict.values()]
|
76 |
else:
|
77 |
raise NotImplemented
|
78 |
for col_name, col_type in zip(cols_list, types_list):
|
|
|
323 |
def reset_rank(df):
|
324 |
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
325 |
return df
|
326 |
+
|
327 |
+
|
328 |
+
def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -> pd.DataFrame:
|
329 |
+
"""
|
330 |
+
Creates a dataframe from all the individual experiment results
|
331 |
+
"""
|
332 |
+
cols = [COL_NAME_IS_ANONYMOUS, ]
|
333 |
+
if task == "qa":
|
334 |
+
cols += COLS_QA
|
335 |
+
benchmark_cols = [t.value.col_name for t in BenchmarksQA]
|
336 |
+
elif task == "long-doc":
|
337 |
+
cols += COLS_LONG_DOC
|
338 |
+
benchmark_cols = [t.value.col_name for t in BenchmarksLongDoc]
|
339 |
+
else:
|
340 |
+
raise NotImplemented
|
341 |
+
all_data_json = []
|
342 |
+
for v in raw_data:
|
343 |
+
all_data_json += v.to_dict(task=task, metric=metric)
|
344 |
+
df = pd.DataFrame.from_records(all_data_json)
|
345 |
+
# print(f'dataframe created: {df.shape}')
|
346 |
+
|
347 |
+
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
348 |
+
|
349 |
+
# calculate the average score for selected benchmarks
|
350 |
+
df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
|
351 |
+
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
352 |
+
df.reset_index(inplace=True, drop=True)
|
353 |
+
|
354 |
+
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
355 |
+
df = df[_cols].round(decimals=2)
|
356 |
+
|
357 |
+
# filter out if any of the benchmarks have not been produced
|
358 |
+
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
359 |
+
|
360 |
+
# shorten the revision
|
361 |
+
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]
|
362 |
+
|
363 |
+
# # replace "0" with "-" for average score
|
364 |
+
# df[COL_NAME_AVG] = df[COL_NAME_AVG].replace(0, "-")
|
365 |
+
return df
|
tests/src/test_read_evals.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
-
from src.read_evals import
|
|
|
4 |
from src.models import FullEvalResult
|
5 |
|
6 |
cur_fp = Path(__file__)
|
@@ -30,7 +31,7 @@ def test_to_dict():
|
|
30 |
|
31 |
def test_get_raw_eval_results():
|
32 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
33 |
-
results =
|
34 |
# only load the latest results
|
35 |
assert len(results) == 4
|
36 |
assert results[0].eval_name == "bge-base-en-v1.5_NoReranker"
|
@@ -41,7 +42,7 @@ def test_get_raw_eval_results():
|
|
41 |
|
42 |
def test_get_leaderboard_df():
|
43 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
44 |
-
raw_data =
|
45 |
df = get_leaderboard_df(raw_data, 'qa', 'ndcg_at_10')
|
46 |
assert df.shape[0] == 4
|
47 |
# the results contain only one embedding model
|
@@ -56,7 +57,7 @@ def test_get_leaderboard_df():
|
|
56 |
|
57 |
def test_get_leaderboard_df_long_doc():
|
58 |
results_path = cur_fp.parents[2] / "toydata" / "test_results"
|
59 |
-
raw_data =
|
60 |
df = get_leaderboard_df(raw_data, 'long-doc', 'ndcg_at_1')
|
61 |
assert df.shape[0] == 2
|
62 |
# the results contain only one embedding model
|
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
+
from src.read_evals import load_raw_eval_results
|
4 |
+
from src.utils import get_leaderboard_df
|
5 |
from src.models import FullEvalResult
|
6 |
|
7 |
cur_fp = Path(__file__)
|
|
|
31 |
|
32 |
def test_get_raw_eval_results():
|
33 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
34 |
+
results = load_raw_eval_results(results_path)
|
35 |
# only load the latest results
|
36 |
assert len(results) == 4
|
37 |
assert results[0].eval_name == "bge-base-en-v1.5_NoReranker"
|
|
|
42 |
|
43 |
def test_get_leaderboard_df():
|
44 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
45 |
+
raw_data = load_raw_eval_results(results_path)
|
46 |
df = get_leaderboard_df(raw_data, 'qa', 'ndcg_at_10')
|
47 |
assert df.shape[0] == 4
|
48 |
# the results contain only one embedding model
|
|
|
57 |
|
58 |
def test_get_leaderboard_df_long_doc():
|
59 |
results_path = cur_fp.parents[2] / "toydata" / "test_results"
|
60 |
+
raw_data = load_raw_eval_results(results_path)
|
61 |
df = get_leaderboard_df(raw_data, 'long-doc', 'ndcg_at_1')
|
62 |
assert df.shape[0] == 2
|
63 |
# the results contain only one embedding model
|