Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
feat: make the model name clickable
Browse files- app.py +5 -0
- src/display/utils.py +3 -2
- src/leaderboard/read_evals.py +9 -5
app.py
CHANGED
@@ -14,6 +14,7 @@ from src.leaderboard.read_evals import get_raw_eval_results, get_leaderboard_df
|
|
14 |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
15 |
from utils import update_table, update_metric, update_table_long_doc, upload_file, get_default_cols
|
16 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
|
|
|
17 |
|
18 |
|
19 |
def restart_space():
|
@@ -122,6 +123,7 @@ with demo:
|
|
122 |
|
123 |
leaderboard_table = gr.components.Dataframe(
|
124 |
value=leaderboard_df_qa,
|
|
|
125 |
elem_id="leaderboard-table",
|
126 |
interactive=False,
|
127 |
visible=True,
|
@@ -130,6 +132,7 @@ with demo:
|
|
130 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
131 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
132 |
value=leaderboard_df_qa,
|
|
|
133 |
# headers=COLS,
|
134 |
# datatype=TYPES,
|
135 |
visible=False,
|
@@ -229,6 +232,7 @@ with demo:
|
|
229 |
|
230 |
leaderboard_table_long_doc = gr.components.Dataframe(
|
231 |
value=leaderboard_df_long_doc,
|
|
|
232 |
elem_id="leaderboard-table-long-doc",
|
233 |
interactive=False,
|
234 |
visible=True,
|
@@ -237,6 +241,7 @@ with demo:
|
|
237 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
238 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
239 |
value=leaderboard_df_long_doc,
|
|
|
240 |
visible=False,
|
241 |
)
|
242 |
|
|
|
14 |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
15 |
from utils import update_table, update_metric, update_table_long_doc, upload_file, get_default_cols
|
16 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
|
17 |
+
from src.display.utils import TYPES_QA, TYPES_LONG_DOC
|
18 |
|
19 |
|
20 |
def restart_space():
|
|
|
123 |
|
124 |
leaderboard_table = gr.components.Dataframe(
|
125 |
value=leaderboard_df_qa,
|
126 |
+
datatype=TYPES_QA,
|
127 |
elem_id="leaderboard-table",
|
128 |
interactive=False,
|
129 |
visible=True,
|
|
|
132 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
133 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
134 |
value=leaderboard_df_qa,
|
135 |
+
datatype=TYPES_QA,
|
136 |
# headers=COLS,
|
137 |
# datatype=TYPES,
|
138 |
visible=False,
|
|
|
232 |
|
233 |
leaderboard_table_long_doc = gr.components.Dataframe(
|
234 |
value=leaderboard_df_long_doc,
|
235 |
+
datatype=TYPES_LONG_DOC,
|
236 |
elem_id="leaderboard-table-long-doc",
|
237 |
interactive=False,
|
238 |
visible=True,
|
|
|
241 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
242 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
243 |
value=leaderboard_df_long_doc,
|
244 |
+
datatype=TYPES_LONG_DOC,
|
245 |
visible=False,
|
246 |
)
|
247 |
|
src/display/utils.py
CHANGED
@@ -66,9 +66,10 @@ AutoEvalColumnLongDoc = make_autoevalcolumn(
|
|
66 |
# Column selection
|
67 |
COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
|
68 |
COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
69 |
-
|
|
|
70 |
COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
|
71 |
|
72 |
QA_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksQA]
|
73 |
|
74 |
-
LONG_DOC_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksLongDoc]
|
|
|
66 |
# Column selection
|
67 |
COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
|
68 |
COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
69 |
+
TYPES_QA = [c.type for c in fields(AutoEvalColumnQA) if not c.hidden]
|
70 |
+
TYPES_LONG_DOC = [c.type for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
71 |
COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
|
72 |
|
73 |
QA_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksQA]
|
74 |
|
75 |
+
LONG_DOC_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksLongDoc]
|
src/leaderboard/read_evals.py
CHANGED
@@ -4,7 +4,6 @@ from collections import defaultdict
|
|
4 |
from dataclasses import dataclass
|
5 |
from typing import List
|
6 |
|
7 |
-
import dateutil.parser._parser
|
8 |
import pandas as pd
|
9 |
|
10 |
from src.benchmarks import get_safe_name
|
@@ -22,6 +21,8 @@ from src.display.utils import (
|
|
22 |
COL_NAME_RANK
|
23 |
)
|
24 |
|
|
|
|
|
25 |
|
26 |
@dataclass
|
27 |
class EvalResult:
|
@@ -100,8 +101,10 @@ class FullEvalResult:
|
|
100 |
if eval_result.task != task:
|
101 |
continue
|
102 |
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
|
103 |
-
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] =
|
104 |
-
|
|
|
|
|
105 |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
|
106 |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
|
107 |
|
@@ -177,16 +180,17 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -
|
|
177 |
df = pd.DataFrame.from_records(all_data_json)
|
178 |
print(f'dataframe created: {df.shape}')
|
179 |
|
180 |
-
# calculate the average score for selected benchmarks
|
181 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
|
|
|
|
182 |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
|
183 |
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
184 |
df.reset_index(inplace=True, drop=True)
|
185 |
-
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
186 |
|
187 |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
188 |
df = df[_cols].round(decimals=2)
|
189 |
|
190 |
# filter out if any of the benchmarks have not been produced
|
191 |
df = df[has_no_nan_values(df, _benchmark_cols)]
|
|
|
192 |
return df
|
|
|
4 |
from dataclasses import dataclass
|
5 |
from typing import List
|
6 |
|
|
|
7 |
import pandas as pd
|
8 |
|
9 |
from src.benchmarks import get_safe_name
|
|
|
21 |
COL_NAME_RANK
|
22 |
)
|
23 |
|
24 |
+
from src.display.formatting import make_clickable_model
|
25 |
+
|
26 |
|
27 |
@dataclass
|
28 |
class EvalResult:
|
|
|
101 |
if eval_result.task != task:
|
102 |
continue
|
103 |
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
|
104 |
+
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = (
|
105 |
+
make_clickable_model(self.retrieval_model, self.retrieval_model_link))
|
106 |
+
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = (
|
107 |
+
make_clickable_model(self.reranking_model, self.reranking_model_link))
|
108 |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
|
109 |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
|
110 |
|
|
|
180 |
df = pd.DataFrame.from_records(all_data_json)
|
181 |
print(f'dataframe created: {df.shape}')
|
182 |
|
|
|
183 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
184 |
+
|
185 |
+
# calculate the average score for selected benchmarks
|
186 |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
|
187 |
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
188 |
df.reset_index(inplace=True, drop=True)
|
|
|
189 |
|
190 |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
191 |
df = df[_cols].round(decimals=2)
|
192 |
|
193 |
# filter out if any of the benchmarks have not been produced
|
194 |
df = df[has_no_nan_values(df, _benchmark_cols)]
|
195 |
+
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
196 |
return df
|