Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
feat: implement anonymous displaying for qa
Browse files- app.py +23 -13
- src/read_evals.py +7 -4
- src/utils.py +19 -6
app.py
CHANGED
@@ -11,6 +11,7 @@ from src.about import (
|
|
11 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, METRIC_LIST, \
|
12 |
DEFAULT_METRIC
|
13 |
from src.display.css_html_js import custom_css
|
|
|
14 |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
15 |
from src.read_evals import get_raw_eval_results, get_leaderboard_df
|
16 |
from src.utils import update_table, update_metric, update_table_long_doc, upload_file, get_default_cols, submit_results
|
@@ -20,13 +21,14 @@ def restart_space():
|
|
20 |
API.restart_space(repo_id=REPO_ID)
|
21 |
|
22 |
|
23 |
-
try:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
except Exception:
|
29 |
-
|
|
|
30 |
|
31 |
raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/AIR-Bench_24.04")
|
32 |
|
@@ -40,7 +42,7 @@ print(f'Long-Doc data loaded: {len(original_df_long_doc)}')
|
|
40 |
|
41 |
leaderboard_df_qa = original_df_qa.copy()
|
42 |
shown_columns_qa, types_qa = get_default_cols('qa', leaderboard_df_qa.columns, add_fix_cols=True)
|
43 |
-
leaderboard_df_qa = leaderboard_df_qa[shown_columns_qa]
|
44 |
|
45 |
leaderboard_df_long_doc = original_df_long_doc.copy()
|
46 |
shown_columns_long_doc, types_long_doc = get_default_cols('long-doc', leaderboard_df_long_doc.columns,
|
@@ -54,8 +56,9 @@ def update_metric_qa(
|
|
54 |
langs: list,
|
55 |
reranking_model: list,
|
56 |
query: str,
|
|
|
57 |
):
|
58 |
-
return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query)
|
59 |
|
60 |
|
61 |
def update_metric_long_doc(
|
@@ -123,6 +126,12 @@ with demo:
|
|
123 |
multiselect=True,
|
124 |
interactive=True
|
125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
leaderboard_table = gr.components.Dataframe(
|
128 |
value=leaderboard_df_qa,
|
@@ -134,10 +143,8 @@ with demo:
|
|
134 |
|
135 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
136 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
137 |
-
value=
|
138 |
datatype=types_qa,
|
139 |
-
# headers=COLS,
|
140 |
-
# datatype=TYPES,
|
141 |
visible=False,
|
142 |
)
|
143 |
|
@@ -150,13 +157,14 @@ with demo:
|
|
150 |
selected_langs,
|
151 |
selected_rerankings,
|
152 |
search_bar,
|
|
|
153 |
],
|
154 |
leaderboard_table,
|
155 |
)
|
156 |
|
157 |
# Set column-wise listener
|
158 |
for selector in [
|
159 |
-
selected_domains, selected_langs, selected_rerankings
|
160 |
]:
|
161 |
selector.change(
|
162 |
update_table,
|
@@ -166,6 +174,7 @@ with demo:
|
|
166 |
selected_langs,
|
167 |
selected_rerankings,
|
168 |
search_bar,
|
|
|
169 |
],
|
170 |
leaderboard_table,
|
171 |
queue=True,
|
@@ -180,6 +189,7 @@ with demo:
|
|
180 |
selected_langs,
|
181 |
selected_rerankings,
|
182 |
search_bar,
|
|
|
183 |
],
|
184 |
leaderboard_table,
|
185 |
queue=True
|
|
|
11 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, METRIC_LIST, \
|
12 |
DEFAULT_METRIC
|
13 |
from src.display.css_html_js import custom_css
|
14 |
+
from src.display.utils import COL_NAME_IS_ANONYMOUS
|
15 |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
16 |
from src.read_evals import get_raw_eval_results, get_leaderboard_df
|
17 |
from src.utils import update_table, update_metric, update_table_long_doc, upload_file, get_default_cols, submit_results
|
|
|
21 |
API.restart_space(repo_id=REPO_ID)
|
22 |
|
23 |
|
24 |
+
# try:
|
25 |
+
# snapshot_download(
|
26 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
27 |
+
# token=TOKEN
|
28 |
+
# )
|
29 |
+
# except Exception as e:
|
30 |
+
# print(f'failed to download')
|
31 |
+
# restart_space()
|
32 |
|
33 |
raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/AIR-Bench_24.04")
|
34 |
|
|
|
42 |
|
43 |
leaderboard_df_qa = original_df_qa.copy()
|
44 |
shown_columns_qa, types_qa = get_default_cols('qa', leaderboard_df_qa.columns, add_fix_cols=True)
|
45 |
+
leaderboard_df_qa = leaderboard_df_qa[~leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
|
46 |
|
47 |
leaderboard_df_long_doc = original_df_long_doc.copy()
|
48 |
shown_columns_long_doc, types_long_doc = get_default_cols('long-doc', leaderboard_df_long_doc.columns,
|
|
|
56 |
langs: list,
|
57 |
reranking_model: list,
|
58 |
query: str,
|
59 |
+
show_anonymous: bool
|
60 |
):
|
61 |
+
return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query, show_anonymous)
|
62 |
|
63 |
|
64 |
def update_metric_long_doc(
|
|
|
126 |
multiselect=True,
|
127 |
interactive=True
|
128 |
)
|
129 |
+
with gr.Row():
|
130 |
+
show_anonymous = gr.Checkbox(
|
131 |
+
label="Show anonymous submissions",
|
132 |
+
value=False,
|
133 |
+
info="The anonymous submissions might have invalid model information."
|
134 |
+
)
|
135 |
|
136 |
leaderboard_table = gr.components.Dataframe(
|
137 |
value=leaderboard_df_qa,
|
|
|
143 |
|
144 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
145 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
146 |
+
value=original_df_qa,
|
147 |
datatype=types_qa,
|
|
|
|
|
148 |
visible=False,
|
149 |
)
|
150 |
|
|
|
157 |
selected_langs,
|
158 |
selected_rerankings,
|
159 |
search_bar,
|
160 |
+
show_anonymous,
|
161 |
],
|
162 |
leaderboard_table,
|
163 |
)
|
164 |
|
165 |
# Set column-wise listener
|
166 |
for selector in [
|
167 |
+
selected_domains, selected_langs, selected_rerankings, show_anonymous
|
168 |
]:
|
169 |
selector.change(
|
170 |
update_table,
|
|
|
174 |
selected_langs,
|
175 |
selected_rerankings,
|
176 |
search_bar,
|
177 |
+
show_anonymous,
|
178 |
],
|
179 |
leaderboard_table,
|
180 |
queue=True,
|
|
|
189 |
selected_langs,
|
190 |
selected_rerankings,
|
191 |
search_bar,
|
192 |
+
show_anonymous,
|
193 |
],
|
194 |
leaderboard_table,
|
195 |
queue=True
|
src/read_evals.py
CHANGED
@@ -15,6 +15,7 @@ from src.display.utils import (
|
|
15 |
COL_NAME_RETRIEVAL_MODEL_LINK,
|
16 |
COL_NAME_REVISION,
|
17 |
COL_NAME_TIMESTAMP,
|
|
|
18 |
COLS_QA,
|
19 |
QA_BENCHMARK_COLS,
|
20 |
COLS_LONG_DOC,
|
@@ -90,7 +91,7 @@ class FullEvalResult:
|
|
90 |
metric=config["metric"],
|
91 |
timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"),
|
92 |
revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"),
|
93 |
-
is_anonymous=config.get("is_anonymous",
|
94 |
)
|
95 |
result_list.append(eval_result)
|
96 |
return cls(
|
@@ -124,6 +125,7 @@ class FullEvalResult:
|
|
124 |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
|
125 |
results[eval_result.eval_name][COL_NAME_REVISION] = self.revision
|
126 |
results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp
|
|
|
127 |
|
128 |
# print(f'result loaded: {eval_result.eval_name}')
|
129 |
for result in eval_result.results:
|
@@ -183,11 +185,12 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -
|
|
183 |
"""
|
184 |
Creates a dataframe from all the individual experiment results
|
185 |
"""
|
|
|
186 |
if task == "qa":
|
187 |
-
cols
|
188 |
benchmark_cols = QA_BENCHMARK_COLS
|
189 |
elif task == "long-doc":
|
190 |
-
cols
|
191 |
benchmark_cols = LONG_DOC_BENCHMARK_COLS
|
192 |
else:
|
193 |
raise NotImplemented
|
@@ -195,7 +198,7 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -
|
|
195 |
for v in raw_data:
|
196 |
all_data_json += v.to_dict(task=task, metric=metric)
|
197 |
df = pd.DataFrame.from_records(all_data_json)
|
198 |
-
print(f'dataframe created: {df.shape}')
|
199 |
|
200 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
201 |
|
|
|
15 |
COL_NAME_RETRIEVAL_MODEL_LINK,
|
16 |
COL_NAME_REVISION,
|
17 |
COL_NAME_TIMESTAMP,
|
18 |
+
COL_NAME_IS_ANONYMOUS,
|
19 |
COLS_QA,
|
20 |
QA_BENCHMARK_COLS,
|
21 |
COLS_LONG_DOC,
|
|
|
91 |
metric=config["metric"],
|
92 |
timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"),
|
93 |
revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"),
|
94 |
+
is_anonymous=config.get("is_anonymous", True)
|
95 |
)
|
96 |
result_list.append(eval_result)
|
97 |
return cls(
|
|
|
125 |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
|
126 |
results[eval_result.eval_name][COL_NAME_REVISION] = self.revision
|
127 |
results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp
|
128 |
+
results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous
|
129 |
|
130 |
# print(f'result loaded: {eval_result.eval_name}')
|
131 |
for result in eval_result.results:
|
|
|
185 |
"""
|
186 |
Creates a dataframe from all the individual experiment results
|
187 |
"""
|
188 |
+
cols = [COL_NAME_IS_ANONYMOUS, ]
|
189 |
if task == "qa":
|
190 |
+
cols += COLS_QA
|
191 |
benchmark_cols = QA_BENCHMARK_COLS
|
192 |
elif task == "long-doc":
|
193 |
+
cols += COLS_LONG_DOC
|
194 |
benchmark_cols = LONG_DOC_BENCHMARK_COLS
|
195 |
else:
|
196 |
raise NotImplemented
|
|
|
198 |
for v in raw_data:
|
199 |
all_data_json += v.to_dict(task=task, metric=metric)
|
200 |
df = pd.DataFrame.from_records(all_data_json)
|
201 |
+
# print(f'dataframe created: {df.shape}')
|
202 |
|
203 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
204 |
|
src/utils.py
CHANGED
@@ -8,7 +8,7 @@ import pandas as pd
|
|
8 |
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
|
9 |
from src.display.formatting import styled_message, styled_error
|
10 |
from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, \
|
11 |
-
COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, get_default_auto_eval_column_dict
|
12 |
from src.envs import API, SEARCH_RESULTS_REPO
|
13 |
from src.read_evals import FullEvalResult, get_leaderboard_df
|
14 |
|
@@ -77,7 +77,7 @@ FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
|
|
77 |
|
78 |
|
79 |
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str = "qa") -> pd.DataFrame:
|
80 |
-
cols = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
|
81 |
selected_cols = []
|
82 |
for c in cols:
|
83 |
if task == "qa":
|
@@ -91,7 +91,7 @@ def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, t
|
|
91 |
selected_cols.append(c)
|
92 |
# We use COLS to maintain sorting
|
93 |
filtered_df = df[FIXED_COLS + selected_cols]
|
94 |
-
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
|
95 |
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
96 |
filtered_df.reset_index(inplace=True, drop=True)
|
97 |
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
|
@@ -105,8 +105,15 @@ def update_table(
|
|
105 |
langs: list,
|
106 |
reranking_query: list,
|
107 |
query: str,
|
|
|
108 |
):
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
filtered_df = filter_queries(query, filtered_df)
|
111 |
df = select_columns(filtered_df, domains, langs)
|
112 |
return df
|
@@ -118,10 +125,13 @@ def update_table_long_doc(
|
|
118 |
langs: list,
|
119 |
reranking_query: list,
|
120 |
query: str,
|
|
|
121 |
):
|
122 |
filtered_df = filter_models(hidden_df, reranking_query)
|
123 |
filtered_df = filter_queries(query, filtered_df)
|
124 |
df = select_columns(filtered_df, domains, langs, task='long_doc')
|
|
|
|
|
125 |
return df
|
126 |
|
127 |
|
@@ -133,6 +143,7 @@ def update_metric(
|
|
133 |
langs: list,
|
134 |
reranking_model: list,
|
135 |
query: str,
|
|
|
136 |
) -> pd.DataFrame:
|
137 |
if task == 'qa':
|
138 |
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
|
@@ -141,7 +152,8 @@ def update_metric(
|
|
141 |
domains,
|
142 |
langs,
|
143 |
reranking_model,
|
144 |
-
query
|
|
|
145 |
)
|
146 |
elif task == "long-doc":
|
147 |
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
|
@@ -150,7 +162,8 @@ def update_metric(
|
|
150 |
domains,
|
151 |
langs,
|
152 |
reranking_model,
|
153 |
-
query
|
|
|
154 |
)
|
155 |
|
156 |
|
|
|
8 |
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
|
9 |
from src.display.formatting import styled_message, styled_error
|
10 |
from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, \
|
11 |
+
COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_IS_ANONYMOUS, get_default_auto_eval_column_dict
|
12 |
from src.envs import API, SEARCH_RESULTS_REPO
|
13 |
from src.read_evals import FullEvalResult, get_leaderboard_df
|
14 |
|
|
|
77 |
|
78 |
|
79 |
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str = "qa") -> pd.DataFrame:
|
80 |
+
cols, _ = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
|
81 |
selected_cols = []
|
82 |
for c in cols:
|
83 |
if task == "qa":
|
|
|
91 |
selected_cols.append(c)
|
92 |
# We use COLS to maintain sorting
|
93 |
filtered_df = df[FIXED_COLS + selected_cols]
|
94 |
+
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].mean(axis=1, numeric_only=True).round(decimals=2)
|
95 |
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
96 |
filtered_df.reset_index(inplace=True, drop=True)
|
97 |
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
|
|
|
105 |
langs: list,
|
106 |
reranking_query: list,
|
107 |
query: str,
|
108 |
+
show_anonymous: bool
|
109 |
):
|
110 |
+
print(f"shown_anonymous: {show_anonymous}")
|
111 |
+
filtered_df = hidden_df
|
112 |
+
if not show_anonymous:
|
113 |
+
print(filtered_df[COL_NAME_IS_ANONYMOUS])
|
114 |
+
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
|
115 |
+
print(f"filtered_df: {len(filtered_df)}")
|
116 |
+
filtered_df = filter_models(filtered_df, reranking_query)
|
117 |
filtered_df = filter_queries(query, filtered_df)
|
118 |
df = select_columns(filtered_df, domains, langs)
|
119 |
return df
|
|
|
125 |
langs: list,
|
126 |
reranking_query: list,
|
127 |
query: str,
|
128 |
+
# show_anonymous: bool
|
129 |
):
|
130 |
filtered_df = filter_models(hidden_df, reranking_query)
|
131 |
filtered_df = filter_queries(query, filtered_df)
|
132 |
df = select_columns(filtered_df, domains, langs, task='long_doc')
|
133 |
+
# if not show_anonymous:
|
134 |
+
# df = df[~df[COL_NAME_IS_ANONYMOUS]]
|
135 |
return df
|
136 |
|
137 |
|
|
|
143 |
langs: list,
|
144 |
reranking_model: list,
|
145 |
query: str,
|
146 |
+
show_anonymous: bool
|
147 |
) -> pd.DataFrame:
|
148 |
if task == 'qa':
|
149 |
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
|
|
|
152 |
domains,
|
153 |
langs,
|
154 |
reranking_model,
|
155 |
+
query,
|
156 |
+
show_anonymous
|
157 |
)
|
158 |
elif task == "long-doc":
|
159 |
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
|
|
|
162 |
domains,
|
163 |
langs,
|
164 |
reranking_model,
|
165 |
+
query,
|
166 |
+
# show_anonymous
|
167 |
)
|
168 |
|
169 |
|