Spaces:
AIR-Bench
/
Running on CPU Upgrade

nan commited on
Commit
f30cbcc
·
1 Parent(s): 8ec7973

feat: fix the table updating

Browse files
app.py CHANGED
@@ -10,15 +10,17 @@ from src.about import (
10
  from src.display.css_html_js import custom_css
11
  from src.display.utils import (
12
  QA_BENCHMARK_COLS,
13
- COLS,
 
 
14
  TYPES,
15
  AutoEvalColumnQA,
16
  fields
17
  )
18
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
19
  from src.populate import get_leaderboard_df
20
- from utils import update_table, update_metric
21
- from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, metric_list
22
 
23
 
24
  def restart_space():
@@ -43,9 +45,15 @@ def restart_space():
43
 
44
  from src.leaderboard.read_evals import get_raw_eval_results
45
  raw_data_qa = get_raw_eval_results(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
46
- original_df_qa = get_leaderboard_df(raw_data_qa, COLS, QA_BENCHMARK_COLS, task='qa', metric='ndcg_at_3')
47
- print(f'data loaded: {len(raw_data_qa)}, {original_df_qa.shape}')
 
 
 
 
48
  leaderboard_df = original_df_qa.copy()
 
 
49
 
50
 
51
  def update_metric_qa(
@@ -55,7 +63,18 @@ def update_metric_qa(
55
  reranking_model: list,
56
  query: str,
57
  ):
58
- return update_metric(raw_data_qa, metric, domains, langs, reranking_model, query)
 
 
 
 
 
 
 
 
 
 
 
59
  # (
60
  # finished_eval_queue_df,
61
  # running_eval_queue_df,
@@ -178,7 +197,113 @@ with demo:
178
  queue=True
179
  )
180
 
181
- # with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
184
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
10
  from src.display.css_html_js import custom_css
11
  from src.display.utils import (
12
  QA_BENCHMARK_COLS,
13
+ LONG_DOC_BENCHMARK_COLS,
14
+ COLS_QA,
15
+ COLS_LONG_DOC,
16
  TYPES,
17
  AutoEvalColumnQA,
18
  fields
19
  )
20
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
21
  from src.populate import get_leaderboard_df
22
+ from utils import update_table, update_metric, update_table_long_doc
23
+ from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
24
 
25
 
26
  def restart_space():
 
45
 
46
  from src.leaderboard.read_evals import get_raw_eval_results
47
  raw_data_qa = get_raw_eval_results(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
48
+ original_df_qa = get_leaderboard_df(raw_data_qa, COLS_QA, QA_BENCHMARK_COLS, task='qa', metric='ndcg_at_3')
49
+ original_df_long_doc = get_leaderboard_df(raw_data_qa, COLS_LONG_DOC, LONG_DOC_BENCHMARK_COLS, task='long_doc', metric='ndcg_at_3')
50
+ print(f'raw data: {len(raw_data_qa)}')
51
+ print(f'QA data loaded: {original_df_qa.shape}')
52
+ print(f'Long-Doc data loaded: {len(original_df_long_doc)}')
53
+
54
  leaderboard_df = original_df_qa.copy()
55
+ leaderboard_df_long_doc = original_df_long_doc.copy()
56
+ print(leaderboard_df_long_doc.head())
57
 
58
 
59
  def update_metric_qa(
 
63
  reranking_model: list,
64
  query: str,
65
  ):
66
+ return update_metric(raw_data_qa, 'qa', metric, domains, langs, reranking_model, query)
67
+
68
+ def update_metric_long_doc(
69
+ metric: str,
70
+ domains: list,
71
+ langs: list,
72
+ reranking_model: list,
73
+ query: str,
74
+ ):
75
+ return update_metric(raw_data_qa, 'long_doc', metric, domains, langs, reranking_model, query)
76
+
77
+
78
  # (
79
  # finished_eval_queue_df,
80
  # running_eval_queue_df,
 
197
  queue=True
198
  )
199
 
200
+ with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
201
+ with gr.Row():
202
+ with gr.Column():
203
+ with gr.Row():
204
+ search_bar = gr.Textbox(
205
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
206
+ show_label=False,
207
+ elem_id="search-bar-long-doc",
208
+ )
209
+ # select the metric
210
+ selected_metric = gr.Dropdown(
211
+ choices=metric_list,
212
+ value=metric_list[1],
213
+ label="Select the metric",
214
+ interactive=True,
215
+ elem_id="metric-select-long-doc",
216
+ )
217
+ with gr.Column(min_width=320):
218
+ # select domain
219
+ with gr.Row():
220
+ selected_domains = gr.CheckboxGroup(
221
+ choices=DOMAIN_COLS_LONG_DOC,
222
+ value=DOMAIN_COLS_LONG_DOC,
223
+ label="Select the domains",
224
+ elem_id="domain-column-select-long-doc",
225
+ interactive=True,
226
+ )
227
+ # select language
228
+ with gr.Row():
229
+ selected_langs = gr.CheckboxGroup(
230
+ choices=LANG_COLS_LONG_DOC,
231
+ value=LANG_COLS_LONG_DOC,
232
+ label="Select the languages",
233
+ elem_id="language-column-select-long-doc",
234
+ interactive=True
235
+ )
236
+ # select reranking model
237
+ reranking_models = list(frozenset([eval_result.reranking_model for eval_result in raw_data_qa]))
238
+ with gr.Row():
239
+ selected_rerankings = gr.CheckboxGroup(
240
+ choices=reranking_models,
241
+ value=reranking_models,
242
+ label="Select the reranking models",
243
+ elem_id="reranking-select-long-doc",
244
+ interactive=True
245
+ )
246
+
247
+ leaderboard_table_long_doc = gr.components.Dataframe(
248
+ value=leaderboard_df_long_doc,
249
+ # headers=shown_columns,
250
+ # datatype=TYPES,
251
+ elem_id="leaderboard-table-long-doc",
252
+ interactive=False,
253
+ visible=True,
254
+ )
255
+
256
+ # Dummy leaderboard for handling the case when the user uses backspace key
257
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
258
+ value=leaderboard_df_long_doc,
259
+ # headers=COLS,
260
+ # datatype=TYPES,
261
+ visible=False,
262
+ )
263
+
264
+ # Set search_bar listener
265
+ search_bar.submit(
266
+ update_table_long_doc,
267
+ [
268
+ hidden_leaderboard_table_for_search,
269
+ selected_domains,
270
+ selected_langs,
271
+ selected_rerankings,
272
+ search_bar,
273
+ ],
274
+ leaderboard_table_long_doc,
275
+ )
276
+
277
+ # Set column-wise listener
278
+ for selector in [
279
+ selected_domains, selected_langs, selected_rerankings
280
+ ]:
281
+ selector.change(
282
+ update_table_long_doc,
283
+ [
284
+ hidden_leaderboard_table_for_search,
285
+ selected_domains,
286
+ selected_langs,
287
+ selected_rerankings,
288
+ search_bar,
289
+ ],
290
+ leaderboard_table_long_doc,
291
+ queue=True,
292
+ )
293
+
294
+ # set metric listener
295
+ selected_metric.change(
296
+ update_metric_long_doc,
297
+ [
298
+ selected_metric,
299
+ selected_domains,
300
+ selected_langs,
301
+ selected_rerankings,
302
+ search_bar,
303
+ ],
304
+ leaderboard_table_long_doc,
305
+ queue=True
306
+ )
307
 
308
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
309
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
src/benchmarks.py CHANGED
@@ -52,19 +52,19 @@ dataset_dict = {
52
  },
53
  "healthcare": {
54
  "en": [
55
- "pubmed_100K-200K_1",
56
- "pubmed_100K-200K_2",
57
- "pubmed_100K-200K_3",
58
- "pubmed_40K-50K_5-merged",
59
- "pubmed_30K-40K_10-merged"
60
  ]
61
  },
62
  "law": {
63
  "en": [
64
- "lex_files_300K-400K",
65
- "lex_files_400K-500K",
66
- "lex_files_500K-600K",
67
- "lex_files_600K-700K"
68
  ]
69
  }
70
  }
@@ -121,21 +121,25 @@ for task, domain_dict in dataset_dict.items():
121
  if task == "qa":
122
  benchmark_name = f"{domain}_{lang}"
123
  benchmark_name = get_safe_name(benchmark_name)
124
- col_name = f"{domain}_{lang}"
125
  for metric in dataset_list:
126
  qa_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task)
127
  elif task == "long_doc":
128
  for dataset in dataset_list:
129
- col_name = f"{domain}_{lang}_{dataset}"
 
 
130
  for metric in metric_list:
131
- benchmark_name = f"{domain}_{lang}_{dataset}_{metric}"
132
- benchmark_name = get_safe_name(benchmark_name)
133
  long_doc_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task)
134
 
135
  BenchmarksQA = Enum('BenchmarksQA', qa_benchmark_dict)
136
  BenchmarksLongDoc = Enum('BenchmarksLongDoc', long_doc_benchmark_dict)
137
 
138
  BENCHMARK_COLS_QA = [c.col_name for c in qa_benchmark_dict.values()]
 
139
 
140
  DOMAIN_COLS_QA = list(frozenset([c.domain for c in qa_benchmark_dict.values()]))
141
  LANG_COLS_QA = list(frozenset([c.lang for c in qa_benchmark_dict.values()]))
 
 
 
 
52
  },
53
  "healthcare": {
54
  "en": [
55
+ "pubmed_100k-200k_1",
56
+ "pubmed_100k-200k_2",
57
+ "pubmed_100k-200k_3",
58
+ "pubmed_40k-50k_5-merged",
59
+ "pubmed_30k-40k_10-merged"
60
  ]
61
  },
62
  "law": {
63
  "en": [
64
+ "lex_files_300k-400k",
65
+ "lex_files_400k-500k",
66
+ "lex_files_500k-600k",
67
+ "lex_files_600k-700k"
68
  ]
69
  }
70
  }
 
121
  if task == "qa":
122
  benchmark_name = f"{domain}_{lang}"
123
  benchmark_name = get_safe_name(benchmark_name)
124
+ col_name = benchmark_name
125
  for metric in dataset_list:
126
  qa_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task)
127
  elif task == "long_doc":
128
  for dataset in dataset_list:
129
+ benchmark_name = f"{domain}_{lang}_{dataset}"
130
+ benchmark_name = get_safe_name(benchmark_name)
131
+ col_name = benchmark_name
132
  for metric in metric_list:
 
 
133
  long_doc_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task)
134
 
135
  BenchmarksQA = Enum('BenchmarksQA', qa_benchmark_dict)
136
  BenchmarksLongDoc = Enum('BenchmarksLongDoc', long_doc_benchmark_dict)
137
 
138
  BENCHMARK_COLS_QA = [c.col_name for c in qa_benchmark_dict.values()]
139
+ BENCHMARK_COLS_LONG_DOC = [c.col_name for c in long_doc_benchmark_dict.values()]
140
 
141
  DOMAIN_COLS_QA = list(frozenset([c.domain for c in qa_benchmark_dict.values()]))
142
  LANG_COLS_QA = list(frozenset([c.lang for c in qa_benchmark_dict.values()]))
143
+
144
+ DOMAIN_COLS_LONG_DOC = list(frozenset([c.domain for c in long_doc_benchmark_dict.values()]))
145
+ LANG_COLS_LONG_DOC = list(frozenset([c.lang for c in long_doc_benchmark_dict.values()]))
src/display/utils.py CHANGED
@@ -55,7 +55,8 @@ class EvalQueueColumn: # Queue column
55
 
56
 
57
  # Column selection
58
- COLS = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
 
59
  TYPES = [c.type for c in fields(AutoEvalColumnQA) if not c.hidden]
60
  COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
61
 
 
55
 
56
 
57
  # Column selection
58
+ COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
59
+ COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
60
  TYPES = [c.type for c in fields(AutoEvalColumnQA) if not c.hidden]
61
  COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
62
 
src/leaderboard/read_evals.py CHANGED
@@ -87,7 +87,7 @@ class FullEvalResult:
87
  if task == 'qa':
88
  benchmark_name = f"{domain}_{lang}"
89
  elif task == 'long_doc':
90
- benchmark_name = f"{domain}_{lang}_{dataset}_{metric}"
91
  results[eval_result.eval_name][get_safe_name(benchmark_name)] = value
92
  return [v for v in results.values()]
93
 
 
87
  if task == 'qa':
88
  benchmark_name = f"{domain}_{lang}"
89
  elif task == 'long_doc':
90
+ benchmark_name = f"{domain}_{lang}_{dataset}"
91
  results[eval_result.eval_name][get_safe_name(benchmark_name)] = value
92
  return [v for v in results.values()]
93
 
src/populate.py CHANGED
@@ -4,7 +4,7 @@ import os
4
  import pandas as pd
5
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumnQA, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results, EvalResult, FullEvalResult
9
  from typing import Tuple, List
10
 
@@ -19,8 +19,13 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], cols: list, benchmark_col
19
 
20
  # calculate the average score for selected benchmarks
21
  _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
22
- df[AutoEvalColumnQA.average.name] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
23
- df = df.sort_values(by=[AutoEvalColumnQA.average.name], ascending=False)
 
 
 
 
 
24
  df.reset_index(inplace=True)
25
 
26
  _cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
 
4
  import pandas as pd
5
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results, EvalResult, FullEvalResult
9
  from typing import Tuple, List
10
 
 
19
 
20
  # calculate the average score for selected benchmarks
21
  _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
22
+ if task == 'qa':
23
+ df[AutoEvalColumnQA.average.name] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
24
+ df = df.sort_values(by=[AutoEvalColumnQA.average.name], ascending=False)
25
+ elif task == "long_doc":
26
+ df[AutoEvalColumnLongDoc.average.name] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
27
+ df = df.sort_values(by=[AutoEvalColumnLongDoc.average.name], ascending=False)
28
+
29
  df.reset_index(inplace=True)
30
 
31
  _cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
tests/src/display/test_utils.py CHANGED
@@ -1,5 +1,5 @@
1
  import pytest
2
- from src.display.utils import fields, AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS, COLS_LITE, TYPES, EVAL_COLS, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
3
 
4
 
5
  def test_fields():
@@ -8,8 +8,10 @@ def test_fields():
8
 
9
 
10
  def test_macro_variables():
11
- print(f'COLS: {COLS}')
 
12
  print(f'COLS_LITE: {COLS_LITE}')
13
  print(f'TYPES: {TYPES}')
14
  print(f'EVAL_COLS: {EVAL_COLS}')
15
- print(f'BENCHMARK_COLS: {QA_BENCHMARK_COLS}')
 
 
1
  import pytest
2
+ from src.display.utils import fields, AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, COLS_LITE, TYPES, EVAL_COLS, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
3
 
4
 
5
  def test_fields():
 
8
 
9
 
10
  def test_macro_variables():
11
+ print(f'COLS_QA: {COLS_QA}')
12
+ print(f'COLS_LONG_DOC: {COLS_LONG_DOC}')
13
  print(f'COLS_LITE: {COLS_LITE}')
14
  print(f'TYPES: {TYPES}')
15
  print(f'EVAL_COLS: {EVAL_COLS}')
16
+ print(f'QA_BENCHMARK_COLS: {QA_BENCHMARK_COLS}')
17
+ print(f'LONG_DOC_BENCHMARK_COLS: {LONG_DOC_BENCHMARK_COLS}')
tests/src/test_populate.py CHANGED
@@ -23,3 +23,19 @@ def test_get_leaderboard_df():
23
  assert not df[['Average ⬆️', 'wiki_en', 'wiki_zh',]].isnull().values.any()
24
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  assert not df[['Average ⬆️', 'wiki_en', 'wiki_zh',]].isnull().values.any()
24
 
25
 
26
+ def test_get_leaderboard_df_long_doc():
27
+ requests_path = cur_fp.parents[1] / "toydata" / "test_requests"
28
+ results_path = cur_fp.parents[1] / "toydata" / "test_results"
29
+ cols = ['Retrieval Model', 'Reranking Model', 'Average ⬆️', 'law_en_lex_files_500k_600k',]
30
+ benchmark_cols = ['law_en_lex_files_500k_600k',]
31
+ raw_data = get_raw_eval_results(results_path, requests_path)
32
+ df = get_leaderboard_df(raw_data, cols, benchmark_cols, 'long_doc', 'ndcg_at_1')
33
+ assert df.shape[0] == 2
34
+ # the results contain only one embedding model
35
+ for i in range(2):
36
+ assert df["Retrieval Model"][i] == "bge-m3"
37
+ # the results contains only two reranking model
38
+ assert df["Reranking Model"][0] == "bge-reranker-v2-m3"
39
+ assert df["Reranking Model"][1] == "NoReranker"
40
+ assert df["Average ⬆️"][0] > df["Average ⬆️"][1]
41
+ assert not df[['Average ⬆️', 'law_en_lex_files_500k_600k',]].isnull().values.any()
tests/test_utils.py CHANGED
@@ -1,7 +1,7 @@
1
  import pandas as pd
2
  import pytest
3
 
4
- from utils import filter_models, search_table, filter_queries, select_columns
5
 
6
 
7
  @pytest.fixture
@@ -29,6 +29,29 @@ def toy_df():
29
  )
30
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  def test_filter_models(toy_df):
33
  df_result = filter_models(toy_df, ["bge-reranker-v2-m3", ])
34
  assert len(df_result) == 2
@@ -50,4 +73,9 @@ def test_filter_queries(toy_df):
50
  def test_select_columns(toy_df):
51
  df_result = select_columns(toy_df, ['news',], ['zh',])
52
  assert len(df_result.columns) == 4
53
- assert df_result['Average ⬆️'].equals(df_result['news_zh'])
 
 
 
 
 
 
1
  import pandas as pd
2
  import pytest
3
 
4
+ from utils import filter_models, search_table, filter_queries, select_columns, update_table_long_doc
5
 
6
 
7
  @pytest.fixture
 
29
  )
30
 
31
 
32
+ @pytest.fixture
33
+ def toy_df_long_doc():
34
+ return pd.DataFrame(
35
+ {
36
+ "Retrieval Model": [
37
+ "bge-m3",
38
+ "bge-m3",
39
+ "jina-embeddings-v2-base",
40
+ "jina-embeddings-v2-base"
41
+ ],
42
+ "Reranking Model": [
43
+ "bge-reranker-v2-m3",
44
+ "NoReranker",
45
+ "bge-reranker-v2-m3",
46
+ "NoReranker"
47
+ ],
48
+ "Average ⬆️": [0.6, 0.4, 0.3, 0.2],
49
+ "law_en_lex_files_300k_400k": [0.4, 0.1, 0.4, 0.3],
50
+ "law_en_lex_files_400k_500k": [0.8, 0.7, 0.2, 0.1],
51
+ "law_en_lex_files_500k_600k": [0.8, 0.7, 0.2, 0.1],
52
+ "law_en_lex_files_600k_700k": [0.4, 0.1, 0.4, 0.3],
53
+ }
54
+ )
55
  def test_filter_models(toy_df):
56
  df_result = filter_models(toy_df, ["bge-reranker-v2-m3", ])
57
  assert len(df_result) == 2
 
73
  def test_select_columns(toy_df):
74
  df_result = select_columns(toy_df, ['news',], ['zh',])
75
  assert len(df_result.columns) == 4
76
+ assert df_result['Average ⬆️'].equals(df_result['news_zh'])
77
+
78
+
79
+ def test_update_table_long_doc(toy_df_long_doc):
80
+ df_result = update_table_long_doc(toy_df_long_doc, ['law',], ['en',], ["bge-reranker-v2-m3", ], "jina")
81
+ print(df_result)
tests/toydata/test_results/bge-m3/NoReranker/results_2023-12-21T18-10-08.json CHANGED
@@ -11,7 +11,7 @@
11
  "domain": "law",
12
  "lang": "en",
13
  "dataset": "lex_files_500K-600K",
14
- "value": 0.75723
15
  }
16
  ]
17
  },
 
11
  "domain": "law",
12
  "lang": "en",
13
  "dataset": "lex_files_500K-600K",
14
+ "value": 0.45723
15
  }
16
  ]
17
  },
utils.py CHANGED
@@ -1,11 +1,10 @@
1
  import pandas as pd
2
 
3
- from src.display.utils import AutoEvalColumnQA, COLS
4
- from src.benchmarks import BENCHMARK_COLS_QA, BenchmarksQA
5
  from src.leaderboard.read_evals import FullEvalResult
6
  from typing import List
7
  from src.populate import get_leaderboard_df
8
- from src.display.utils import COLS, QA_BENCHMARK_COLS
9
 
10
 
11
  def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
@@ -38,19 +37,29 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
38
  return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]
39
 
40
 
41
- def select_columns(df: pd.DataFrame, domain_query: list, language_query: list) -> pd.DataFrame:
42
- always_here_cols = [
43
- AutoEvalColumnQA.retrieval_model.name,
44
- AutoEvalColumnQA.reranking_model.name,
45
- AutoEvalColumnQA.average.name
46
- ]
 
 
 
 
 
 
 
 
 
47
  selected_cols = []
48
- for c in COLS:
49
  if c not in df.columns:
50
  continue
51
- if c not in BENCHMARK_COLS_QA:
52
- continue
53
- eval_col = BenchmarksQA[c].value
 
54
  if eval_col.domain not in domain_query:
55
  continue
56
  if eval_col.lang not in language_query:
@@ -58,7 +67,7 @@ def select_columns(df: pd.DataFrame, domain_query: list, language_query: list) -
58
  selected_cols.append(c)
59
  # We use COLS to maintain sorting
60
  filtered_df = df[always_here_cols + selected_cols]
61
- filtered_df[AutoEvalColumnQA.average.name] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
62
  return filtered_df
63
 
64
 
@@ -75,20 +84,43 @@ def update_table(
75
  return df
76
 
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  def update_metric(
79
  raw_data: List[FullEvalResult],
 
80
  metric: str,
81
  domains: list,
82
  langs: list,
83
  reranking_model: list,
84
  query: str,
85
  ) -> pd.DataFrame:
86
- leaderboard_df = get_leaderboard_df(raw_data, COLS, QA_BENCHMARK_COLS, task='qa', metric=metric)
87
- hidden_df = leaderboard_df
88
- return update_table(
89
- hidden_df,
90
- domains,
91
- langs,
92
- reranking_model,
93
- query
94
- )
 
 
 
 
 
 
 
 
 
 
1
  import pandas as pd
2
 
3
+ from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
4
+ from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
5
  from src.leaderboard.read_evals import FullEvalResult
6
  from typing import List
7
  from src.populate import get_leaderboard_df
 
8
 
9
 
10
  def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
 
37
  return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]
38
 
39
 
40
+ def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str="qa") -> pd.DataFrame:
41
+ if task == "qa":
42
+ always_here_cols = [
43
+ AutoEvalColumnQA.retrieval_model.name,
44
+ AutoEvalColumnQA.reranking_model.name,
45
+ AutoEvalColumnQA.average.name
46
+ ]
47
+ cols = list(frozenset(COLS_QA).intersection(frozenset(BENCHMARK_COLS_QA)))
48
+ elif task == "long_doc":
49
+ always_here_cols = [
50
+ AutoEvalColumnLongDoc.retrieval_model.name,
51
+ AutoEvalColumnLongDoc.reranking_model.name,
52
+ AutoEvalColumnLongDoc.average.name
53
+ ]
54
+ cols = list(frozenset(COLS_LONG_DOC).intersection(frozenset(BENCHMARK_COLS_LONG_DOC)))
55
  selected_cols = []
56
+ for c in cols:
57
  if c not in df.columns:
58
  continue
59
+ if task == "qa":
60
+ eval_col = BenchmarksQA[c].value
61
+ elif task == "long_doc":
62
+ eval_col = BenchmarksLongDoc[c].value
63
  if eval_col.domain not in domain_query:
64
  continue
65
  if eval_col.lang not in language_query:
 
67
  selected_cols.append(c)
68
  # We use COLS to maintain sorting
69
  filtered_df = df[always_here_cols + selected_cols]
70
+ filtered_df[always_here_cols[2]] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
71
  return filtered_df
72
 
73
 
 
84
  return df
85
 
86
 
87
+ def update_table_long_doc(
88
+ hidden_df: pd.DataFrame,
89
+ domains: list,
90
+ langs: list,
91
+ reranking_query: list,
92
+ query: str,
93
+ ):
94
+ filtered_df = filter_models(hidden_df, reranking_query)
95
+ filtered_df = filter_queries(query, filtered_df)
96
+ df = select_columns(filtered_df, domains, langs, task='long_doc')
97
+ return df
98
+
99
+
100
  def update_metric(
101
  raw_data: List[FullEvalResult],
102
+ task: str,
103
  metric: str,
104
  domains: list,
105
  langs: list,
106
  reranking_model: list,
107
  query: str,
108
  ) -> pd.DataFrame:
109
+ if task == 'qa':
110
+ leaderboard_df = get_leaderboard_df(raw_data, COLS_QA, QA_BENCHMARK_COLS, task=task, metric=metric)
111
+ return update_table(
112
+ leaderboard_df,
113
+ domains,
114
+ langs,
115
+ reranking_model,
116
+ query
117
+ )
118
+ elif task == 'long_doc':
119
+ leaderboard_df = get_leaderboard_df(raw_data, COLS_LONG_DOC, LONG_DOC_BENCHMARK_COLS, task=task, metric=metric)
120
+ return update_table_long_doc(
121
+ leaderboard_df,
122
+ domains,
123
+ langs,
124
+ reranking_model,
125
+ query
126
+ )