from pathlib import Path from src.read_evals import load_raw_eval_results from src.utils import get_leaderboard_df from src.models import FullEvalResult cur_fp = Path(__file__) def test_init_from_json_file(): json_fp = cur_fp.parents[2] / "toydata" / "test_data.json" full_eval_result = FullEvalResult.init_from_json_file(json_fp) num_different_task_domain_lang_metric_dataset_combination = 6 assert len(full_eval_result.results) == \ num_different_task_domain_lang_metric_dataset_combination assert full_eval_result.retrieval_model == "bge-m3" assert full_eval_result.reranking_model == "bge-reranker-v2-m3" def test_to_dict(): json_fp = cur_fp.parents[2] / "toydata" / "test_data.json" full_eval_result = FullEvalResult.init_from_json_file(json_fp) result_list = full_eval_result.to_dict(task='qa', metric='ndcg_at_1') assert len(result_list) == 1 result_dict = result_list[0] assert result_dict["Retrieval Model"] == "bge-m3" assert result_dict["Reranking Model"] == "bge-reranker-v2-m3" assert result_dict["wiki_en"] is not None assert result_dict["wiki_zh"] is not None def test_get_raw_eval_results(): results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04" results = load_raw_eval_results(results_path) # only load the latest results assert len(results) == 4 assert results[0].eval_name == "bge-base-en-v1.5_NoReranker" assert len(results[0].results) == 70 assert results[0].eval_name == "bge-base-en-v1.5_bge-reranker-v2-m3" assert len(results[1].results) == 70 def test_get_leaderboard_df(): results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04" raw_data = load_raw_eval_results(results_path) df = get_leaderboard_df(raw_data, 'qa', 'ndcg_at_10') assert df.shape[0] == 4 # the results contain only one embedding model # for i in range(4): # assert df["Retrieval Model"][i] == "bge-m3" # # the results contain only two reranking model # assert df["Reranking Model"][0] == "bge-reranker-v2-m3" # assert df["Reranking Model"][1] == "NoReranker" # assert df["Average ⬆️"][0] > df["Average ⬆️"][1] # assert not df[['Average ⬆️', 'wiki_en', 'wiki_zh', ]].isnull().values.any() def test_get_leaderboard_df_long_doc(): results_path = cur_fp.parents[2] / "toydata" / "test_results" raw_data = load_raw_eval_results(results_path) df = get_leaderboard_df(raw_data, 'long-doc', 'ndcg_at_1') assert df.shape[0] == 2 # the results contain only one embedding model for i in range(2): assert df["Retrieval Model"][i] == "bge-m3" # the results contains only two reranking model assert df["Reranking Model"][0] == "bge-reranker-v2-m3" assert df["Reranking Model"][1] == "NoReranker" assert df["Average ⬆️"][0] > df["Average ⬆️"][1] assert not df[['Average ⬆️', 'law_en_lex_files_500k_600k', ]].isnull().values.any()