import json import os.path from collections import defaultdict from dataclasses import dataclass from typing import List import pandas as pd from src.benchmarks import get_safe_name from src.display.formatting import has_no_nan_values from src.display.utils import ( COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL_LINK, COL_NAME_RETRIEVAL_MODEL_LINK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COLS_QA, QA_BENCHMARK_COLS, COLS_LONG_DOC, LONG_DOC_BENCHMARK_COLS, COL_NAME_AVG, COL_NAME_RANK ) from src.display.formatting import make_clickable_model @dataclass class EvalResult: """ Evaluation result of a single embedding model with a specific reranking model on benchmarks over different domains, languages, and datasets """ eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model]_[metric] retrieval_model: str reranking_model: str results: list # results on all the benchmarks stored as dict task: str metric: str timestamp: str = "" # submission timestamp revision: str = "" is_anonymous: bool = False @dataclass class FullEvalResult: """ Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks """ eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model] retrieval_model: str reranking_model: str retrieval_model_link: str reranking_model_link: str results: List[EvalResult] # results on all the EvalResults over different tasks and metrics. timestamp: str = "" revision: str = "" is_anonymous: bool = False @classmethod def init_from_json_file(cls, json_filepath): """ Initiate from the result json file for a single model. The json file will be written only when the status is FINISHED. """ with open(json_filepath) as fp: model_data = json.load(fp) # store all the results for different metrics and tasks result_list = [] retrieval_model_link = "" reranking_model_link = "" revision = "" for item in model_data: config = item.get("config", {}) # eval results for different metrics results = item.get("results", []) retrieval_model_link = config["retrieval_model_link"] if config["reranking_model_link"] is None: reranking_model_link = "" else: reranking_model_link = config["reranking_model_link"] eval_result = EvalResult( eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}", retrieval_model=config["retrieval_model"], reranking_model=config["reranking_model"], results=results, task=config["task"], metric=config["metric"], timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"), revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"), is_anonymous=config.get("is_anonymous", False) ) result_list.append(eval_result) return cls( eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}", retrieval_model=result_list[0].retrieval_model, reranking_model=result_list[0].reranking_model, retrieval_model_link=retrieval_model_link, reranking_model_link=reranking_model_link, results=result_list, timestamp=result_list[0].timestamp, revision=result_list[0].revision, is_anonymous=result_list[0].is_anonymous ) def to_dict(self, task='qa', metric='ndcg_at_3') -> List: """ Convert the results in all the EvalResults over different tasks and metrics. The output is a list of dict compatible with the dataframe UI """ results = defaultdict(dict) for eval_result in self.results: if eval_result.metric != metric: continue if eval_result.task != task: continue results[eval_result.eval_name]["eval_name"] = eval_result.eval_name results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = ( make_clickable_model(self.retrieval_model, self.retrieval_model_link)) results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = ( make_clickable_model(self.reranking_model, self.reranking_model_link)) results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link results[eval_result.eval_name][COL_NAME_REVISION] = self.revision results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp # print(f'result loaded: {eval_result.eval_name}') for result in eval_result.results: # add result for each domain, language, and dataset domain = result["domain"] lang = result["lang"] dataset = result["dataset"] value = result["value"] if dataset == 'default': benchmark_name = f"{domain}_{lang}" else: benchmark_name = f"{domain}_{lang}_{dataset}" results[eval_result.eval_name][get_safe_name(benchmark_name)] = value return [v for v in results.values()] def get_raw_eval_results(results_path: str) -> List[FullEvalResult]: """ Load the evaluation results from a json file """ model_result_filepaths = [] for root, dirs, files in os.walk(results_path): if len(files) == 0: continue # select the latest results for file in files: if file != "results.json": print(f'skip {file}') continue model_result_filepaths.append(os.path.join(root, file)) eval_results = {} for model_result_filepath in model_result_filepaths: # create evaluation results try: eval_result = FullEvalResult.init_from_json_file(model_result_filepath) except UnicodeDecodeError as e: print(f"loading file failed. {model_result_filepath}") continue print(f'file loaded: {model_result_filepath}') eval_name = eval_result.eval_name eval_results[eval_name] = eval_result results = [] for k, v in eval_results.items(): try: v.to_dict() results.append(v) except KeyError: print(f"loading failed: {k}") continue return results def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -> pd.DataFrame: """ Creates a dataframe from all the individual experiment results """ if task == "qa": cols = COLS_QA benchmark_cols = QA_BENCHMARK_COLS elif task == "long-doc": cols = COLS_LONG_DOC benchmark_cols = LONG_DOC_BENCHMARK_COLS else: raise NotImplemented all_data_json = [] for v in raw_data: all_data_json += v.to_dict(task=task, metric=metric) df = pd.DataFrame.from_records(all_data_json) print(f'dataframe created: {df.shape}') _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list())) # calculate the average score for selected benchmarks df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2) df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True) df.reset_index(inplace=True, drop=True) _cols = frozenset(cols).intersection(frozenset(df.columns.to_list())) df = df[_cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, _benchmark_cols)] df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min") # shorten the revision df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6] return df