File size: 13,917 Bytes
d6979e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48e891a
 
 
d6979e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48e891a
 
 
 
 
 
 
 
 
 
 
 
 
 
65341a7
48e891a
 
 
 
 
 
 
 
 
 
 
65341a7
48e891a
 
44f8107
 
48e891a
 
 
 
 
 
65341a7
fca1daa
65341a7
48e891a
 
 
d6979e5
 
 
 
 
 
 
 
 
511bdf3
d6979e5
 
 
 
 
 
 
 
 
 
 
48e891a
 
 
 
 
 
 
d6979e5
 
511bdf3
d6979e5
511bdf3
026906f
d6979e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31daf22
 
 
 
 
 
85255fd
31daf22
 
 
 
 
 
ef21382
d6979e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48e891a
 
 
 
 
 
d6979e5
 
48e891a
d6979e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import json
import time
import shutil
import logging
import zipfile
from typing import List, Optional
from collections import defaultdict

from air_benchmark.tasks.tasks import check_benchmark_version
from air_benchmark.evaluation_utils.data_loader import DataLoader
from air_benchmark.evaluation_utils.evaluator import Evaluator

from src.envs import (
    API,
    ZIP_CACHE_DIR,SUBMIT_INFOS_SAVE_PATH,
    SEARCH_RESULTS_REPO, RESULTS_REPO,
    make_clickable_model
)

logger = logging.getLogger(__name__)
logging.basicConfig(
    level=logging.WARNING,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)


def compute_metrics(
    benchmark_version: str,
    search_results_save_dir: str,
    k_values: List[int] = [1, 3, 5, 10, 50, 100, 1000],
    cache_dir: Optional[str] = None,
):
    data_loader = DataLoader(benchmark_version, cache_dir=cache_dir)
    evaluator = Evaluator(data_loader)
    
    eval_results = evaluator.evaluate_results(search_results_save_dir, k_values=k_values)
    return eval_results


def save_evaluation_results(
    eval_results: dict, 
    save_path: str,
    model_name: str,
    reranker_name: str,
    model_link: Optional[str] = None,
    reranker_link: Optional[str] = None,
    is_anonymous: bool = False,
    timestamp: str = None,
    revision: str = None,
):
    results = defaultdict(list)
    configs = {}
    
    for task_type, task_type_results in eval_results.items():
        for domain, domain_results in task_type_results.items():
            for lang, lang_results in domain_results.items():
                for dataset_name, task_results in lang_results.items():
                    for metric, metric_val in task_results.items():
                        _key = f"{model_name}_{reranker_name}_{task_type}_{metric}"
                        results[_key].append({
                            "domain": domain,
                            "lang": lang,
                            "dataset": dataset_name,
                            "value": metric_val,
                        })
                        configs[_key] = {
                            "retrieval_model": model_name,
                            "retrieval_model_link": model_link,
                            "reranking_model": reranker_name,
                            "reranking_model_link": reranker_link,
                            "task": task_type,
                            "metric": metric,
                            "timestamp": timestamp,
                            "is_anonymous": is_anonymous,
                            "revision": revision,
                        }
    
    results_list = []
    for k, result in results.items():
        config = configs[k]
        results_list.append({
            "config": config,
            "results": result
        })
    with open(save_path, 'w', encoding='utf-8') as f:
        json.dump(results_list, f, ensure_ascii=False, indent=4)


def get_file_list(dir_path: str, allowed_suffixes: List[str] = None) -> List[str]:
    file_paths = set()
    if os.path.exists(dir_path) and os.path.isdir(dir_path):
        for root, _, files in os.walk(dir_path):
            for file in files:
                if allowed_suffixes is None or any(
                    file.endswith(suffix) for suffix in allowed_suffixes
                ):
                    file_paths.add(os.path.abspath(os.path.join(root, file)))
    return file_paths


def get_zip_file_path(zip_file_name: str):
    zip_file_path = None
    for root, _, files in os.walk(ZIP_CACHE_DIR):
        for file in files:
            if file == zip_file_name:
                zip_file_path = os.path.abspath(os.path.join(root, file))
                break
    return zip_file_path


def find_file(file_name: str, dir_path: str):
    if not os.path.exists(dir_path) or not os.path.isdir(dir_path):
        return False
    for root, _, files in os.walk(dir_path):
        for file in files:
            if file == file_name:
                return True
    return False


def get_submit_infos_list(file_paths: List[str], eval_results_dir: str) -> dict:
    submit_infos_list = []
    for file_path in file_paths:
        submit_info = {
            '#': None,
            'Submission Date': None,
            'Benchmark Version': None,
            'Retrieval Method': None,
            'Reranking Method': None,
            'Revision': None,
            'Status': None,
        }
        file_name = os.path.basename(file_path).split('.')[0]
        rank_time = file_name.split('-')[0]
        with open(file_path, 'r', encoding='utf-8') as f:
            metadata = json.load(f)
        submit_info['#'] = rank_time
        submit_info['Submission Date'] = metadata['timestamp']
        submit_info['Benchmark Version'] = metadata['version']
        submit_info['Retrieval Method'] = (make_clickable_model(metadata['model_name'], metadata['model_url']))
        submit_info['Reranking Method'] = (make_clickable_model(metadata['reranker_name'], metadata['reranker_url']))
        submit_info['Revision'] = metadata['revision']
        if find_file(f"results_{file_name}.json", eval_results_dir):
            submit_info['Status'] = "✔️ Success"
        else:
            submit_info['Status'] = "❌ Failed"
        submit_infos_list.append(submit_info)
    sorted_submit_infos_list = sorted(submit_infos_list, key=lambda x: x['#'], reverse=True)
    for order, submit_info in enumerate(sorted_submit_infos_list, 1):
        submit_info['#'] = order
    return sorted_submit_infos_list


def pull_search_results(
    hf_search_results_repo_dir: str,
    hf_eval_results_repo_dir: str,
    unzip_target_dir: str,
    k_values: List[int] = [1, 3, 5, 10, 50, 100, 1000],
    cache_dir: str = None,
    time_duration: int = 1800,
    start_commit_id: str = None
):
    print("Start from commit:", start_commit_id)
    if start_commit_id is not None:
        API.snapshot_download(
            repo_id=SEARCH_RESULTS_REPO,
            repo_type="dataset",
            revision=start_commit_id,
            local_dir=hf_search_results_repo_dir,
            etag_timeout=30,
            allow_patterns=['*.json']
        )
        cur_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
    else:
        API.snapshot_download(
            repo_id=SEARCH_RESULTS_REPO,
            repo_type="dataset",
            local_dir=hf_search_results_repo_dir,
            etag_timeout=30,
            allow_patterns=['*.json']
        )
        cur_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
    
    print("Start to pull new search results ...")
    while True:
        os.makedirs(ZIP_CACHE_DIR, exist_ok=True)
        os.makedirs(unzip_target_dir, exist_ok=True)
        try:
            API.snapshot_download(
                repo_id=RESULTS_REPO,
                repo_type="dataset",
                local_dir=hf_eval_results_repo_dir,
                etag_timeout=30
            )
            API.snapshot_download(
                repo_id=SEARCH_RESULTS_REPO,
                repo_type="dataset",
                local_dir=hf_search_results_repo_dir,
                etag_timeout=30,
                allow_patterns=['*.json']
            )
        except Exception as e:
            logger.error(f"Failed to download the search results or evaluation results: {e}")
            logger.error(f"Wait for {time_duration} seconds for the next update ...")
            time.sleep(time_duration)
            continue
        
        commit_infos_dict = defaultdict(list)
        
        new_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
        added_file_paths = new_file_paths - cur_file_paths
        for metadata_file_path in sorted(list(added_file_paths)):
            with open(metadata_file_path, 'r', encoding='utf-8') as f:
                metadata = json.load(f)
            
            model_name = metadata['model_name']
            model_link = None if not metadata['model_url'] else metadata['model_url']
            reranker_name = metadata['reranker_name']
            reranker_link = None if not metadata['reranker_url'] else metadata['reranker_url']
            benchmark_version = metadata['version']
            
            try:
                check_benchmark_version(benchmark_version)
            except ValueError:
                logger.error(f"Invalid benchmark version `{benchmark_version}` in file `{metadata_file_path}`. Skip this commit.")
                continue
            
            file_name = os.path.basename(metadata_file_path).split('.')[0]
            zip_file_name = f"{file_name}.zip"
            
            try:
                API.snapshot_download(
                    repo_id=SEARCH_RESULTS_REPO,
                    repo_type="dataset",
                    local_dir=ZIP_CACHE_DIR,
                    etag_timeout=30,
                    allow_patterns=[f'*{zip_file_name}']
                )
                zip_file_path = get_zip_file_path(zip_file_name)
                assert zip_file_path is not None, f"zip_file_path is None"
            except Exception as e:
                logger.error(f"Failed to download the zip file `{zip_file_name}`: {e}")
                continue

            unzip_target_path = os.path.join(unzip_target_dir, benchmark_version, file_name)
            os.makedirs(unzip_target_path, exist_ok=True)
            try:
                with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
                    zip_ref.extractall(unzip_target_path)
            except Exception as e:
                logger.error(f"Failed to unzip the search results `{file_name}`: {e}")
                continue
            
            commit_infos_dict[benchmark_version].append({
                "model_name": model_name,
                "model_link": model_link,
                "reranker_name": reranker_name,
                "reranker_link": reranker_link,
                "is_anonymous": metadata['is_anonymous'],
                "file_name": file_name,
                "timestamp": metadata['timestamp'],
                "revision": metadata['revision'],
                "search_results_dir": unzip_target_path
            })
        
        # Sort the search results by timestamp
        for benchmark_version in commit_infos_dict:
            commit_infos_dict[benchmark_version].sort(key=lambda x: int(os.path.basename(x["search_results_dir"]).split('-')[0]))
        
        # Save the evaluation results
        update_flag = False
        new_models_set = set()
        for benchmark_version, commit_infos in commit_infos_dict.items():
            eval_results_dir = os.path.join(hf_eval_results_repo_dir, benchmark_version)
            os.makedirs(eval_results_dir, exist_ok=True)
            
            for commit_info in commit_infos:
                try:
                    eval_results = compute_metrics(
                        benchmark_version, 
                        commit_info['search_results_dir'],
                        k_values=k_values,
                        cache_dir=cache_dir,
                    )
                except KeyError as e:
                    logger.error(f"KeyError: {e}. Skip this commit: {commit_info['file_name']}")
                    continue
                
                save_dir = os.path.join(eval_results_dir, commit_info['model_name'], commit_info['reranker_name'])
                os.makedirs(save_dir, exist_ok=True)
                results_save_path = os.path.join(save_dir, f"results_{commit_info['file_name']}.json")
                save_evaluation_results(eval_results, 
                                        results_save_path,
                                        commit_info['model_name'],
                                        commit_info['reranker_name'],
                                        model_link=commit_info['model_link'],
                                        reranker_link=commit_info['reranker_link'],
                                        is_anonymous=commit_info['is_anonymous'],
                                        timestamp=commit_info['timestamp'],
                                        revision=commit_info['revision'])
                new_models_set.add(f"{commit_info['model_name']}_{commit_info['reranker_name']}")
                
                update_flag = True
        
        # Commit the updated evaluation results
        if update_flag:
            commit_message = "Update evaluation results\nNew models added in this update:\n"
            for new_model in new_models_set:
                commit_message += f"\t- {new_model}\n"
            
            API.upload_folder(
                repo_id=RESULTS_REPO,
                folder_path=hf_eval_results_repo_dir,
                path_in_repo=None,
                commit_message=commit_message,
                repo_type="dataset"
            )
            logger.warning("Evaluation results updated and pushed to the remote repository.")

            # Print the new models
            logger.warning("=====================================")
            logger.warning("New models added in this update:")
            for new_model in new_models_set:
                logger.warning("\t" + new_model)
        
        # Clean the cache
        shutil.rmtree(ZIP_CACHE_DIR)
        shutil.rmtree(unzip_target_dir)
        
        # update submit infos
        cur_file_paths = new_file_paths
        submit_infos_list = get_submit_infos_list(cur_file_paths, hf_eval_results_repo_dir)
        with open(SUBMIT_INFOS_SAVE_PATH, 'w', encoding='utf-8') as f:
            json.dump(submit_infos_list, f, ensure_ascii=False, indent=4)
        
        # Wait for the next update
        logger.warning(f"Wait for {time_duration} seconds for the next update ...")
        
        time.sleep(time_duration)