hanhainebula's picture
fix a bug in backend.py
026906f
raw
history blame
11.7 kB
import os
import json
import time
import shutil
import logging
import zipfile
from typing import List, Optional
from collections import defaultdict
from air_benchmark.tasks.tasks import check_benchmark_version
from air_benchmark.evaluation_utils.data_loader import DataLoader
from air_benchmark.evaluation_utils.evaluator import Evaluator
from src.envs import (
API,
LOG_DIR, ZIP_CACHE_DIR,
SEARCH_RESULTS_REPO, RESULTS_REPO
)
log_file = os.path.join(LOG_DIR, f"backend_{time.strftime('%Y-%m-%d_%H-%M-%S')}.log")
logger = logging.getLogger(__name__)
logging.basicConfig(
filename=log_file,
filemode='w',
level=logging.WARNING,
datefmt='%Y-%m-%d %H:%M:%S',
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
def compute_metrics(
benchmark_version: str,
search_results_save_dir: str,
k_values: List[int] = [1, 3, 5, 10, 50, 100, 1000],
cache_dir: Optional[str] = None,
):
data_loader = DataLoader(benchmark_version, cache_dir=cache_dir)
evaluator = Evaluator(data_loader)
eval_results = evaluator.evaluate_results(search_results_save_dir, k_values=k_values)
return eval_results
def save_evaluation_results(
eval_results: dict,
save_path: str,
model_name: str,
reranker_name: str,
model_link: Optional[str] = None,
reranker_link: Optional[str] = None,
is_anonymous: bool = False,
timestamp: str = None,
revision: str = None,
):
results = defaultdict(list)
configs = {}
for task_type, task_type_results in eval_results.items():
for domain, domain_results in task_type_results.items():
for lang, lang_results in domain_results.items():
for dataset_name, task_results in lang_results.items():
for metric, metric_val in task_results.items():
_key = f"{model_name}_{reranker_name}_{task_type}_{metric}"
results[_key].append({
"domain": domain,
"lang": lang,
"dataset": dataset_name,
"value": metric_val,
})
configs[_key] = {
"retrieval_model": model_name,
"retrieval_model_link": model_link,
"reranking_model": reranker_name,
"reranking_model_link": reranker_link,
"task": task_type,
"metric": metric,
"timestamp": timestamp,
"is_anonymous": is_anonymous,
"revision": revision,
}
results_list = []
for k, result in results.items():
config = configs[k]
results_list.append({
"config": config,
"results": result
})
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(results_list, f, ensure_ascii=False, indent=4)
def get_file_list(dir_path: str, allowed_suffixes: List[str] = None) -> List[str]:
file_paths = set()
if os.path.exists(dir_path) and os.path.isdir(dir_path):
for root, _, files in os.walk(dir_path):
for file in files:
if allowed_suffixes is None or any(
file.endswith(suffix) for suffix in allowed_suffixes
):
file_paths.add(os.path.abspath(os.path.join(root, file)))
return file_paths
def get_zip_file_path(zip_file_name: str):
zip_file_path = None
for root, _, files in os.walk(ZIP_CACHE_DIR):
for file in files:
if file == zip_file_name:
zip_file_path = os.path.abspath(os.path.join(root, file))
break
return zip_file_path
def pull_search_results(
hf_search_results_repo_dir: str,
hf_eval_results_repo_dir: str,
unzip_target_dir: str,
k_values: List[int] = [1, 3, 5, 10, 50, 100, 1000],
cache_dir: str = None,
time_duration: int = 1800,
start_commit_id: str = None
):
print("Start from commit:", start_commit_id)
if start_commit_id is not None:
API.snapshot_download(
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
revision=start_commit_id,
local_dir=hf_search_results_repo_dir,
etag_timeout=30,
allow_patterns=['*.json']
)
cur_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
else:
cur_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
print("Start to pull new search results ...")
while True:
os.makedirs(ZIP_CACHE_DIR, exist_ok=True)
os.makedirs(unzip_target_dir, exist_ok=True)
try:
API.snapshot_download(
repo_id=RESULTS_REPO,
repo_type="dataset",
local_dir=hf_eval_results_repo_dir,
etag_timeout=30
)
API.snapshot_download(
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
local_dir=hf_search_results_repo_dir,
etag_timeout=30,
allow_patterns=['*.json']
)
except Exception as e:
logger.error(f"Failed to download the search results or evaluation results: {e}")
logger.error(f"Wait for {time_duration} seconds for the next update ...")
time.sleep(time_duration)
continue
commit_infos_dict = defaultdict(list)
new_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
added_file_paths = new_file_paths - cur_file_paths
for metadata_file_path in sorted(list(added_file_paths)):
with open(metadata_file_path, 'r', encoding='utf-8') as f:
metadata = json.load(f)
model_name = metadata['model_name']
model_link = None if not metadata['model_url'] else metadata['model_url']
reranker_name = metadata['reranker_name']
reranker_link = None if not metadata['reranker_url'] else metadata['reranker_url']
benchmark_version = metadata['version']
try:
check_benchmark_version(benchmark_version)
except ValueError:
logger.error(f"Invalid benchmark version `{benchmark_version}` in file `{metadata_file_path}`. Skip this commit.")
continue
file_name = os.path.basename(metadata_file_path).split('.')[0]
zip_file_name = f"{file_name}.zip"
try:
API.snapshot_download(
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
local_dir=ZIP_CACHE_DIR,
etag_timeout=30,
allow_patterns=[zip_file_name]
)
zip_file_path = get_zip_file_path(zip_file_name)
assert zip_file_path is not None
except Exception as e:
logger.error(f"Failed to download the zip file `{zip_file_name}`: {e}")
continue
unzip_target_path = os.path.join(unzip_target_dir, benchmark_version, file_name)
os.makedirs(unzip_target_path, exist_ok=True)
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(unzip_target_path)
except Exception as e:
logger.error(f"Failed to unzip the search results `{file_name}`: {e}")
continue
commit_infos_dict[benchmark_version].append({
"model_name": model_name,
"model_link": model_link,
"reranker_name": reranker_name,
"reranker_link": reranker_link,
"is_anonymous": metadata['is_anonymous'],
"file_name": file_name,
"timestamp": metadata['timestamp'],
"revision": metadata['revision'],
"search_results_dir": unzip_target_path
})
# Sort the search results by timestamp
for benchmark_version in commit_infos_dict:
commit_infos_dict[benchmark_version].sort(key=lambda x: int(os.path.basename(x["search_results_dir"]).split('-')[0]))
# Save the evaluation results
update_flag = False
new_models_set = set()
for benchmark_version, commit_infos in commit_infos_dict.items():
eval_results_dir = os.path.join(hf_eval_results_repo_dir, benchmark_version)
os.makedirs(eval_results_dir, exist_ok=True)
for commit_info in commit_infos:
try:
eval_results = compute_metrics(
benchmark_version,
commit_info['search_results_dir'],
k_values=k_values,
cache_dir=cache_dir,
)
except KeyError as e:
logger.error(f"KeyError: {e}. Skip this commit: {commit_info['file_name']}")
continue
save_dir = os.path.join(eval_results_dir, commit_info['model_name'], commit_info['reranker_name'])
os.makedirs(save_dir, exist_ok=True)
results_save_path = os.path.join(save_dir, f"results_{commit_info['file_name']}.json")
save_evaluation_results(eval_results,
results_save_path,
commit_info['model_name'],
commit_info['reranker_name'],
model_link=commit_info['model_link'],
reranker_link=commit_info['reranker_link'],
is_anonymous=commit_info['is_anonymous'],
timestamp=commit_info['timestamp'],
revision=commit_info['revision'])
new_models_set.add(f"{commit_info['model_name']}_{commit_info['reranker_name']}")
update_flag = True
# Commit the updated evaluation results
if update_flag:
commit_message = "Update evaluation results\nNew models added in this update:\n"
for new_model in new_models_set:
commit_message += f"\t- {new_model}\n"
API.upload_folder(
repo_id=RESULTS_REPO,
folder_path=hf_eval_results_repo_dir,
path_in_repo=None,
commit_message=commit_message,
repo_type="dataset"
)
logger.warning("Evaluation results updated and pushed to the remote repository.")
# Print the new models
logger.warning("=====================================")
logger.warning("New models added in this update:")
for new_model in new_models_set:
logger.warning("\t" + new_model)
# Clean the cache
shutil.rmtree(ZIP_CACHE_DIR)
shutil.rmtree(unzip_target_dir)
# Wait for the next update
logger.warning(f"Wait for {time_duration} seconds for the next update ...")
cur_file_paths = new_file_paths
time.sleep(time_duration)