Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,111 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
|
5 |
+
# Initialize model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
|
|
8 |
|
9 |
+
class ChatBot:
|
10 |
+
def __init__(self, model, tokenizer):
|
11 |
+
self.model = model
|
12 |
+
self.tokenizer = tokenizer
|
13 |
+
self.chat_history = []
|
14 |
+
|
15 |
+
def generate_response(self, message, temperature=0.7, max_length=512):
|
16 |
+
# Format the conversation history
|
17 |
+
conversation = ""
|
18 |
+
for turn in self.chat_history:
|
19 |
+
conversation += f"User: {turn[0]}\nAssistant: {turn[1]}\n"
|
20 |
+
conversation += f"User: {message}\nAssistant:"
|
21 |
+
|
22 |
+
# Tokenize and generate
|
23 |
+
inputs = self.tokenizer(conversation, return_tensors="pt", truncation=True)
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = self.model.generate(
|
27 |
+
inputs["input_ids"],
|
28 |
+
max_length=max_length,
|
29 |
+
temperature=temperature,
|
30 |
+
do_sample=True,
|
31 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
32 |
+
num_return_sequences=1,
|
33 |
+
)
|
34 |
+
|
35 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
response = response.split("Assistant:")[-1].strip()
|
37 |
+
|
38 |
+
# Update chat history
|
39 |
+
self.chat_history.append((message, response))
|
40 |
+
return response, self.chat_history
|
41 |
|
42 |
+
def clear_history(self):
|
43 |
+
self.chat_history = []
|
44 |
+
return [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Initialize chatbot
|
47 |
+
chatbot = ChatBot(model, tokenizer)
|
|
|
|
|
|
|
48 |
|
49 |
+
# Example conversations
|
50 |
+
examples = [
|
51 |
+
["Hello! How are you today?"],
|
52 |
+
["Can you explain what machine learning is?"],
|
53 |
+
["Write a short poem about artificial intelligence."],
|
54 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Create the Gradio interface
|
57 |
+
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
58 |
+
gr.Markdown("# LLaMA Chatbot")
|
59 |
+
gr.Markdown("Chat with the ELN-Llama-1B model. Try asking questions or having a conversation!")
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column(scale=4):
|
63 |
+
chatbot_component = gr.Chatbot(
|
64 |
+
label="Chat History",
|
65 |
+
height=400
|
66 |
+
)
|
67 |
+
message = gr.Textbox(
|
68 |
+
label="Your message",
|
69 |
+
placeholder="Type your message here...",
|
70 |
+
lines=2
|
71 |
+
)
|
72 |
+
|
73 |
+
with gr.Column(scale=1):
|
74 |
+
temperature = gr.Slider(
|
75 |
+
minimum=0.1,
|
76 |
+
maximum=1.0,
|
77 |
+
value=0.7,
|
78 |
+
step=0.1,
|
79 |
+
label="Temperature",
|
80 |
+
info="Higher values make output more random"
|
81 |
+
)
|
82 |
+
max_length = gr.Slider(
|
83 |
+
minimum=64,
|
84 |
+
maximum=1024,
|
85 |
+
value=512,
|
86 |
+
step=64,
|
87 |
+
label="Max Length",
|
88 |
+
info="Maximum length of generated response"
|
89 |
+
)
|
90 |
+
clear = gr.Button("Clear Conversation")
|
91 |
+
|
92 |
+
gr.Examples(
|
93 |
+
examples=examples,
|
94 |
+
inputs=message,
|
95 |
+
label="Example prompts"
|
96 |
+
)
|
97 |
+
|
98 |
+
# Handle interactions
|
99 |
+
message.submit(
|
100 |
+
chatbot.generate_response,
|
101 |
+
inputs=[message, temperature, max_length],
|
102 |
+
outputs=[chatbot_component]
|
103 |
+
)
|
104 |
+
clear.click(
|
105 |
+
chatbot.clear_history,
|
106 |
+
outputs=[chatbot_component, message]
|
107 |
+
)
|
108 |
|
109 |
+
# Launch the interface
|
110 |
if __name__ == "__main__":
|
111 |
+
demo.launch(share=True)
|