diabolic6045 commited on
Commit
1fc00b0
·
verified ·
1 Parent(s): c79bf06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -55
app.py CHANGED
@@ -1,64 +1,111 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
+ # Initialize model and tokenizer
6
+ tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
7
+ model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
 
8
 
9
+ class ChatBot:
10
+ def __init__(self, model, tokenizer):
11
+ self.model = model
12
+ self.tokenizer = tokenizer
13
+ self.chat_history = []
14
+
15
+ def generate_response(self, message, temperature=0.7, max_length=512):
16
+ # Format the conversation history
17
+ conversation = ""
18
+ for turn in self.chat_history:
19
+ conversation += f"User: {turn[0]}\nAssistant: {turn[1]}\n"
20
+ conversation += f"User: {message}\nAssistant:"
21
+
22
+ # Tokenize and generate
23
+ inputs = self.tokenizer(conversation, return_tensors="pt", truncation=True)
24
+
25
+ with torch.no_grad():
26
+ outputs = self.model.generate(
27
+ inputs["input_ids"],
28
+ max_length=max_length,
29
+ temperature=temperature,
30
+ do_sample=True,
31
+ pad_token_id=self.tokenizer.eos_token_id,
32
+ num_return_sequences=1,
33
+ )
34
+
35
+ response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
36
+ response = response.split("Assistant:")[-1].strip()
37
+
38
+ # Update chat history
39
+ self.chat_history.append((message, response))
40
+ return response, self.chat_history
41
 
42
+ def clear_history(self):
43
+ self.chat_history = []
44
+ return [], []
 
 
 
 
 
 
45
 
46
+ # Initialize chatbot
47
+ chatbot = ChatBot(model, tokenizer)
 
 
 
48
 
49
+ # Example conversations
50
+ examples = [
51
+ ["Hello! How are you today?"],
52
+ ["Can you explain what machine learning is?"],
53
+ ["Write a short poem about artificial intelligence."],
54
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ # Create the Gradio interface
57
+ with gr.Blocks(css="footer {visibility: hidden}") as demo:
58
+ gr.Markdown("# LLaMA Chatbot")
59
+ gr.Markdown("Chat with the ELN-Llama-1B model. Try asking questions or having a conversation!")
60
+
61
+ with gr.Row():
62
+ with gr.Column(scale=4):
63
+ chatbot_component = gr.Chatbot(
64
+ label="Chat History",
65
+ height=400
66
+ )
67
+ message = gr.Textbox(
68
+ label="Your message",
69
+ placeholder="Type your message here...",
70
+ lines=2
71
+ )
72
+
73
+ with gr.Column(scale=1):
74
+ temperature = gr.Slider(
75
+ minimum=0.1,
76
+ maximum=1.0,
77
+ value=0.7,
78
+ step=0.1,
79
+ label="Temperature",
80
+ info="Higher values make output more random"
81
+ )
82
+ max_length = gr.Slider(
83
+ minimum=64,
84
+ maximum=1024,
85
+ value=512,
86
+ step=64,
87
+ label="Max Length",
88
+ info="Maximum length of generated response"
89
+ )
90
+ clear = gr.Button("Clear Conversation")
91
+
92
+ gr.Examples(
93
+ examples=examples,
94
+ inputs=message,
95
+ label="Example prompts"
96
+ )
97
+
98
+ # Handle interactions
99
+ message.submit(
100
+ chatbot.generate_response,
101
+ inputs=[message, temperature, max_length],
102
+ outputs=[chatbot_component]
103
+ )
104
+ clear.click(
105
+ chatbot.clear_history,
106
+ outputs=[chatbot_component, message]
107
+ )
108
 
109
+ # Launch the interface
110
  if __name__ == "__main__":
111
+ demo.launch(share=True)