diabolic6045 commited on
Commit
27d500f
·
verified ·
1 Parent(s): ba50ca2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -57
app.py CHANGED
@@ -1,64 +1,60 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("diabolic6045/ELN-Llama-1B-base")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
 
 
 
 
 
 
 
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Initialize model and tokenizer
6
+ tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
7
+ model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
8
+
9
+ def generate_response(message, history):
10
+ # Format the conversation history
11
+
12
+ print("here")
13
+ conversation = ""
14
+ for h in history:
15
+ conversation += f"User: {h[0]}\nAssistant: {h[1]}\n"
16
+ conversation += f"User: {message}\nAssistant:"
17
+
18
+ # Tokenize input
19
+ inputs = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=512)
20
+
21
+ # Generate response
22
+ with torch.no_grad():
23
+ outputs = model.generate(
24
+ inputs["input_ids"],
25
+ max_length=200,
26
+ temperature=0.7,
27
+ do_sample=True,
28
+ pad_token_id=tokenizer.eos_token_id,
29
+ num_return_sequences=1,
30
+ )
31
+
32
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
33
+ # Extract only the assistant's response
34
+ response = response.split("Assistant:")[-1].strip()
35
+
36
+ return response
37
+
38
+ # Create the Gradio interface
 
 
 
 
 
 
 
39
  demo = gr.ChatInterface(
40
+ fn=generate_response,
41
+ type="messages",
42
+ title="LLaMA Chatbot",
43
+ description="Chat with the ELN-Llama-1B model. Ask questions or have a conversation!",
44
+ examples=[
45
+ "What is artificial intelligence?",
46
+ "Write a short poem about nature.",
47
+ "Explain quantum computing in simple terms.",
48
+ ],
49
+ cache_examples=True,
50
  additional_inputs=[
51
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
52
+ gr.Slider(minimum=50, maximum=500, value=200, step=50, label="Max Length"),
 
 
 
 
 
 
 
 
53
  ],
54
+ retry_btn="Regenerate",
55
+ undo_btn="Undo Last",
56
+ clear_btn="Clear",
57
  )
58
 
 
59
  if __name__ == "__main__":
60
+ demo.launch(share=True)