Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
additional_inputs=[
|
49 |
-
gr.
|
50 |
-
gr.Slider(minimum=
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Initialize model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
8 |
+
|
9 |
+
def generate_response(message, history):
|
10 |
+
# Format the conversation history
|
11 |
+
|
12 |
+
print("here")
|
13 |
+
conversation = ""
|
14 |
+
for h in history:
|
15 |
+
conversation += f"User: {h[0]}\nAssistant: {h[1]}\n"
|
16 |
+
conversation += f"User: {message}\nAssistant:"
|
17 |
+
|
18 |
+
# Tokenize input
|
19 |
+
inputs = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=512)
|
20 |
+
|
21 |
+
# Generate response
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model.generate(
|
24 |
+
inputs["input_ids"],
|
25 |
+
max_length=200,
|
26 |
+
temperature=0.7,
|
27 |
+
do_sample=True,
|
28 |
+
pad_token_id=tokenizer.eos_token_id,
|
29 |
+
num_return_sequences=1,
|
30 |
+
)
|
31 |
+
|
32 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
# Extract only the assistant's response
|
34 |
+
response = response.split("Assistant:")[-1].strip()
|
35 |
+
|
36 |
+
return response
|
37 |
+
|
38 |
+
# Create the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
demo = gr.ChatInterface(
|
40 |
+
fn=generate_response,
|
41 |
+
type="messages",
|
42 |
+
title="LLaMA Chatbot",
|
43 |
+
description="Chat with the ELN-Llama-1B model. Ask questions or have a conversation!",
|
44 |
+
examples=[
|
45 |
+
"What is artificial intelligence?",
|
46 |
+
"Write a short poem about nature.",
|
47 |
+
"Explain quantum computing in simple terms.",
|
48 |
+
],
|
49 |
+
cache_examples=True,
|
50 |
additional_inputs=[
|
51 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
|
52 |
+
gr.Slider(minimum=50, maximum=500, value=200, step=50, label="Max Length"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
],
|
54 |
+
retry_btn="Regenerate",
|
55 |
+
undo_btn="Undo Last",
|
56 |
+
clear_btn="Clear",
|
57 |
)
|
58 |
|
|
|
59 |
if __name__ == "__main__":
|
60 |
+
demo.launch(share=True)
|