diabolic6045 commited on
Commit
f2ab5ed
·
verified ·
1 Parent(s): 92fb3f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -102
app.py CHANGED
@@ -1,111 +1,64 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- import torch
4
 
5
- # Initialize model and tokenizer
6
- tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
7
- model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
 
8
 
9
- class ChatBot:
10
- def __init__(self, model, tokenizer):
11
- self.model = model
12
- self.tokenizer = tokenizer
13
- self.chat_history = []
14
-
15
- def generate_response(self, message, temperature=0.7, max_length=512):
16
- # Format the conversation history
17
- conversation = ""
18
- for turn in self.chat_history:
19
- conversation += f"User: {turn[0]}\nAssistant: {turn[1]}\n"
20
- conversation += f"User: {message}\nAssistant:"
21
-
22
- # Tokenize and generate
23
- inputs = self.tokenizer(conversation, return_tensors="pt", truncation=True)
24
-
25
- with torch.no_grad():
26
- outputs = self.model.generate(
27
- inputs["input_ids"],
28
- max_length=max_length,
29
- temperature=temperature,
30
- do_sample=True,
31
- pad_token_id=self.tokenizer.eos_token_id,
32
- num_return_sequences=1,
33
- )
34
-
35
- response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
36
- response = response.split("Assistant:")[-1].strip()
37
-
38
- # Update chat history
39
- self.chat_history.append((message, response))
40
- return response, self.chat_history
41
 
42
- def clear_history(self):
43
- self.chat_history = []
44
- return [], []
 
 
 
 
 
 
45
 
46
- # Initialize chatbot
47
- chatbot = ChatBot(model, tokenizer)
 
 
 
48
 
49
- # Example conversations
50
- examples = [
51
- ["Hello! How are you today?"],
52
- ["Can you explain what machine learning is?"],
53
- ["Write a short poem about artificial intelligence."],
54
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- # Create the Gradio interface
57
- with gr.Blocks(css="footer {visibility: hidden}") as demo:
58
- gr.Markdown("# LLaMA Chatbot")
59
- gr.Markdown("Chat with the ELN-Llama-1B model. Try asking questions or having a conversation!")
60
-
61
- with gr.Row():
62
- with gr.Column(scale=4):
63
- chatbot_component = gr.Chatbot(
64
- label="Chat History",
65
- height=400
66
- )
67
- message = gr.Textbox(
68
- label="Your message",
69
- placeholder="Type your message here...",
70
- lines=2
71
- )
72
-
73
- with gr.Column(scale=1):
74
- temperature = gr.Slider(
75
- minimum=0.1,
76
- maximum=1.0,
77
- value=0.7,
78
- step=0.1,
79
- label="Temperature",
80
- info="Higher values make output more random"
81
- )
82
- max_length = gr.Slider(
83
- minimum=64,
84
- maximum=1024,
85
- value=512,
86
- step=64,
87
- label="Max Length",
88
- info="Maximum length of generated response"
89
- )
90
- clear = gr.Button("Clear Conversation")
91
-
92
- gr.Examples(
93
- examples=examples,
94
- inputs=message,
95
- label="Example prompts"
96
- )
97
-
98
- # Handle interactions
99
- message.submit(
100
- chatbot.generate_response,
101
- inputs=[message, temperature, max_length],
102
- outputs=[chatbot_component]
103
- )
104
- clear.click(
105
- chatbot.clear_history,
106
- outputs=[chatbot_component, message]
107
- )
108
 
109
- # Launch the interface
110
  if __name__ == "__main__":
111
- demo.launch(share=True)
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("diabolic6045/ELN-Llama-1B-base")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
 
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
 
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
+ demo.launch()