Spaces:
Sleeping
Sleeping
File size: 8,907 Bytes
e6062ad d5de94c e6062ad d5de94c e6062ad d5de94c e6062ad d5de94c e6062ad d5de94c e6062ad d5de94c e6062ad fb667fe e6062ad d5de94c e6062ad d5de94c e6062ad 217e57c 4d48604 6794250 4d48604 6794250 4d48604 6794250 4d48604 6794250 4d48604 6794250 4d48604 d5de94c 4d48604 d5de94c 4d48604 e6062ad 4d48604 d5de94c 4d48604 e6062ad d5de94c e6062ad d5de94c e6062ad d5de94c e6062ad 4d48604 6794250 4d48604 d5de94c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import tempfile
import time
from typing import Any
from collections.abc import Sequence
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize segmenter
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def apply_mask(
img: Image.Image,
mask_img: Image.Image,
defringe: bool = True,
) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
# Mitigate edge halo effects via color decontamination
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = estimate_foreground_ml(rgb, alpha)
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
@spaces.GPU
def _gpu_process(
img: Image.Image,
bbox: BoundingBox | None,
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(
img: Image.Image,
bbox: BoundingBox | None,
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(bbox, tuple):
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in bbox)
bbox = (x0, y0, x1, y1)
mask, bbox, time_log = _gpu_process(img, bbox)
t0 = time.time()
masked_alpha = apply_mask(img, mask, defringe=True)
time_log.append(f"crop: {time.time() - t0}")
print(", ".join(time_log))
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True)
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
if len(boxes) == 1:
assert isinstance(box := boxes[0], dict)
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
else:
assert len(boxes) == 0
bbox = None
return _process(img, bbox)
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
css = '''
.gradio-container {
max-width: 1400px !important;
margin: auto;
}
/* 이미지 크기 조정 */
.image-container img {
max-height: 600px !important;
}
/* 이미지 슬라이더 크기 조정 */
.image-slider {
height: 600px !important;
max-height: 600px !important;
}
h1 {
text-align: center;
font-family: 'Pretendard', sans-serif;
color: #EA580C;
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 1.5rem;
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
text-align: center;
color: #4B5563;
font-size: 1.1rem;
margin-bottom: 2rem;
font-family: 'Pretendard', sans-serif;
}
.gr-button-primary {
background-color: #F97316 !important;
border: none !important;
box-shadow: 0 2px 4px rgba(234, 88, 12, 0.2) !important;
}
.gr-button-primary:hover {
background-color: #EA580C !important;
transform: translateY(-1px);
box-shadow: 0 4px 6px rgba(234, 88, 12, 0.25) !important;
}
.footer-content {
text-align: center;
margin-top: 3rem;
padding: 2rem;
background: linear-gradient(to bottom, #FFF7ED, white);
border-radius: 12px;
font-family: 'Pretendard', sans-serif;
}
.footer-content a {
color: #EA580C;
text-decoration: none;
font-weight: 500;
transition: all 0.2s;
}
.footer-content a:hover {
color: #C2410C;
}
.visit-button {
background-color: #EA580C;
color: white !important; /* 강제 적용 */
padding: 12px 24px;
border-radius: 8px;
font-weight: 600;
text-decoration: none;
display: inline-block;
transition: all 0.3s;
margin-top: 1rem;
box-shadow: 0 2px 4px rgba(234, 88, 12, 0.2);
font-size: 1.1rem;
}
.visit-button:hover {
background-color: #C2410C;
transform: translateY(-2px);
box-shadow: 0 4px 6px rgba(234, 88, 12, 0.25);
color: white !important; /* 호버 상태에서도 강제 적용 */
}
.container-wrapper {
background: white;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.image-container {
border-radius: 12px;
overflow: hidden;
border: 2px solid #F3F4F6;
}
'''
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#FFF7ED",
c100="#FFEDD5",
c200="#FED7AA",
c300="#FDBA74",
c400="#FB923C",
c500="#F97316",
c600="#EA580C",
c700="#C2410C",
c800="#9A3412",
c900="#7C2D12",
c950="#431407",
),
secondary_hue="zinc",
neutral_hue="zinc",
font=("Pretendard", "sans-serif")
),
css=css
) as demo:
gr.HTML(
"""
<h1>끝장AI 이미지 객체 추출기</h1>
<div class="subtitle">
이미지에서 원하는 객체를 손쉽게 분리하여 투명 배경으로 추출하세요.<br>
고품질의 HD 이미지 추출을 지원합니다.
</div>
"""
)
with gr.Row(elem_classes="container-wrapper"):
with gr.Column():
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="원본 이미지",
elem_classes="image-container"
)
btn = gr.ClearButton(value="객체 추출하기", interactive=False)
with gr.Column():
oimg = ImageSlider(label="추출 결과", show_download_button=False, elem_classes="image-container")
dlbt = gr.DownloadButton("이미지 다운로드", interactive=False)
btn.add(oimg)
annotator.change(
fn=on_change_bbox,
inputs=[annotator],
outputs=[btn],
)
btn.click(
fn=process_bbox,
inputs=[annotator],
outputs=[oimg, dlbt],
)
examples = [
{
"image": "examples/potted-plant.jpg",
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
},
{
"image": "examples/chair.jpg",
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
},
{
"image": "examples/black-lamp.jpg",
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
},
]
ex = gr.Examples(
examples=examples,
inputs=[annotator],
outputs=[oimg, dlbt],
fn=process_bbox,
cache_examples=True,
)
gr.HTML(
"""
<div class='footer-content'>
<p style='font-size: 1.1rem; font-weight: 500; color: #1F2937;'>끝장AI가 제공하는 고급 AI 도구를 더 경험하고 싶으신가요?</p>
<a href='https://finalendai.com' target='_blank' class='visit-button' style='color: white !important;'>
끝장AI 방문하기
</a>
<p style='margin-top: 1.5rem; color: #6B7280; font-size: 0.9rem;'>
© 2024 끝장AI. All rights reserved.
</p>
</div>
"""
)
demo.launch(share=False) |