Spaces:
Running
Running
File size: 1,197 Bytes
f228a1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
class Guardrail:
def __init__(self):
tokenizer = AutoTokenizer.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
model = AutoModelForSequenceClassification.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
self.classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=512,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
def guard(self, prompt):
return self.classifier(prompt)
class TextPrompt(BaseModel):
prompt: str
app = FastAPI()
guardrail = Guardrail()
@app.post("/classify/")
def classify_text(text_prompt: TextPrompt):
try:
result = guardrail.guard(text_prompt.prompt)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|