Spaces:
Paused
Paused
Commit
·
a6b2f62
1
Parent(s):
0ab515f
initial commit
Browse files- app.py +173 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import re
|
7 |
+
from sklearn.ensemble import RandomForestClassifier
|
8 |
+
from sklearn.preprocessing import LabelEncoder
|
9 |
+
from fuzzywuzzy import process
|
10 |
+
|
11 |
+
# Enhanced data generation with realistic fraud patterns
|
12 |
+
def load_data():
|
13 |
+
np.random.seed(42)
|
14 |
+
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
15 |
+
age_groups = ['18-25', '26-35', '36-45', '46-55', '56+']
|
16 |
+
incomes = ['Low', 'Medium', 'High']
|
17 |
+
|
18 |
+
data = pd.DataFrame({
|
19 |
+
'TransactionID': range(1, 1001),
|
20 |
+
'Amount': np.random.uniform(10, 15000, 1000).round(2),
|
21 |
+
'Type': np.random.choice(['Credit', 'Debit'], 1000),
|
22 |
+
'City': np.random.choice(cities, 1000),
|
23 |
+
'Age': np.random.randint(18, 70, 1000),
|
24 |
+
'Income': np.random.choice(incomes, 1000, p=[0.4, 0.4, 0.2])
|
25 |
+
})
|
26 |
+
|
27 |
+
# Create realistic fraud patterns
|
28 |
+
data['Fraud'] = 0
|
29 |
+
data.loc[
|
30 |
+
((data['Amount'] > 5000) & (data['Income'] == 'Low')) |
|
31 |
+
((data['Type'] == 'Credit') & (data['Amount'] > 8000)) |
|
32 |
+
((data['City'] == 'New York') & (data['Age'].between(20, 35)) & (data['Amount'] > 6000)),
|
33 |
+
'Fraud'
|
34 |
+
] = 1
|
35 |
+
|
36 |
+
return data
|
37 |
+
|
38 |
+
data = load_data()
|
39 |
+
|
40 |
+
# Preprocessing
|
41 |
+
le = LabelEncoder()
|
42 |
+
data['Type_encoded'] = le.fit_transform(data['Type'])
|
43 |
+
data['City_encoded'] = le.fit_transform(data['City'])
|
44 |
+
data['Income_encoded'] = le.fit_transform(data['Income'])
|
45 |
+
|
46 |
+
# Train model
|
47 |
+
features = ['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']
|
48 |
+
X = data[features]
|
49 |
+
y = data['Fraud']
|
50 |
+
|
51 |
+
model = RandomForestClassifier(random_state=42, n_estimators=100)
|
52 |
+
model.fit(X, y)
|
53 |
+
|
54 |
+
# Enhanced NLP processing with fuzzy matching
|
55 |
+
def process_nl_query(query):
|
56 |
+
try:
|
57 |
+
# Extract amount
|
58 |
+
amount_match = re.search(r'\$?(\d+(?:,\d{3})*(?:\.\d{2})?)', query)
|
59 |
+
if amount_match:
|
60 |
+
amount = float(amount_match.group(1).replace(',', ''))
|
61 |
+
else:
|
62 |
+
return "Error: Could not extract transaction amount. Please specify the amount clearly."
|
63 |
+
|
64 |
+
# Extract transaction type
|
65 |
+
trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
|
66 |
+
|
67 |
+
# Fuzzy match city
|
68 |
+
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
69 |
+
city_match = process.extractOne(query, cities)
|
70 |
+
city = city_match[0] if city_match[1] > 70 else None
|
71 |
+
|
72 |
+
# Extract age
|
73 |
+
age_match = re.search(r'(\d+)\s*(?:years?|yrs?)?(?:\s*old)?', query)
|
74 |
+
if age_match:
|
75 |
+
age = int(age_match.group(1))
|
76 |
+
else:
|
77 |
+
return "Error: Could not extract age. Please specify the age clearly."
|
78 |
+
|
79 |
+
# Extract income level
|
80 |
+
income = 'Low' if 'low' in query.lower() else \
|
81 |
+
'High' if 'high' in query.lower() else 'Medium'
|
82 |
+
|
83 |
+
# Prepare input
|
84 |
+
input_df = pd.DataFrame({
|
85 |
+
'Amount': [amount],
|
86 |
+
'Type_encoded': le.transform([trans_type])[0],
|
87 |
+
'City_encoded': le.transform([city])[0] if city else -1,
|
88 |
+
'Age': [age],
|
89 |
+
'Income_encoded': le.transform([income])[0]
|
90 |
+
})
|
91 |
+
|
92 |
+
# Predict
|
93 |
+
proba = model.predict_proba(input_df)[0][1]
|
94 |
+
prediction = model.predict(input_df)[0]
|
95 |
+
|
96 |
+
# Generate explanation
|
97 |
+
explanation = []
|
98 |
+
if amount > 5000 and income == 'Low':
|
99 |
+
explanation.append("High amount for low income")
|
100 |
+
if amount > 8000 and trans_type == 'Credit':
|
101 |
+
explanation.append("Unusually large credit transaction")
|
102 |
+
if city == 'New York' and 20 <= age <= 35 and amount > 6000:
|
103 |
+
explanation.append("Suspicious pattern for young adults in NYC")
|
104 |
+
|
105 |
+
return (
|
106 |
+
f"Transaction Details:\n"
|
107 |
+
f"- Amount: ${amount:,.2f}\n"
|
108 |
+
f"- Type: {trans_type}\n"
|
109 |
+
f"- City: {city if city else 'Unknown'}\n"
|
110 |
+
f"- Age: {age}\n"
|
111 |
+
f"- Income Level: {income}\n\n"
|
112 |
+
f"Fraud Analysis:\n"
|
113 |
+
f"- Prediction: {'Potentially Fraudulent' if prediction else 'Likely Legitimate'}\n"
|
114 |
+
f"- Confidence: {proba*100:.1f}%\n"
|
115 |
+
f"- Risk Factors: {', '.join(explanation) if explanation else 'No specific risk factors identified'}"
|
116 |
+
)
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
return f"Error processing query: {str(e)}. Please provide clear details including amount, type, city, age, and income level."
|
120 |
+
|
121 |
+
# Plotting functions
|
122 |
+
def plot_fraud_by_city():
|
123 |
+
plt.figure(figsize=(10, 6))
|
124 |
+
sns.countplot(data=data[data['Fraud'] == 1], x='City')
|
125 |
+
plt.title('Fraud Cases by City')
|
126 |
+
plt.xlabel('City')
|
127 |
+
plt.ylabel('Number of Fraud Cases')
|
128 |
+
return plt
|
129 |
+
|
130 |
+
def plot_fraud_by_income():
|
131 |
+
plt.figure(figsize=(10, 6))
|
132 |
+
sns.countplot(data=data[data['Fraud'] == 1], x='Income')
|
133 |
+
plt.title('Fraud Cases by Income Level')
|
134 |
+
plt.xlabel('Income Level')
|
135 |
+
plt.ylabel('Number of Fraud Cases')
|
136 |
+
return plt
|
137 |
+
|
138 |
+
def plot_amount_vs_age():
|
139 |
+
plt.figure(figsize=(10, 6))
|
140 |
+
sns.scatterplot(data=data, x='Amount', y='Age', hue='Fraud')
|
141 |
+
plt.title('Transaction Amount vs Age (Fraud Highlighted)')
|
142 |
+
plt.xlabel('Transaction Amount')
|
143 |
+
plt.ylabel('Age')
|
144 |
+
return plt
|
145 |
+
|
146 |
+
# Gradio Interface
|
147 |
+
with gr.Blocks() as demo:
|
148 |
+
gr.Markdown("## Natural Language Fraud Detection System")
|
149 |
+
|
150 |
+
with gr.Tab("Natural Language Query"):
|
151 |
+
gr.Markdown("**Example:** 'I saw a credit transaction of $6000 in New York for a 26-year-old client with low income. Is this suspicious?'")
|
152 |
+
nl_input = gr.Textbox(label="Enter your transaction query:")
|
153 |
+
nl_output = gr.Textbox(label="Fraud Analysis", lines=10)
|
154 |
+
gr.Examples(
|
155 |
+
examples=[
|
156 |
+
"Is a $8000 credit transaction in Chicago for a 45-year-old with medium income suspicious?",
|
157 |
+
"Check a debit of $300 in Phoenix for a 60-year-old high income client",
|
158 |
+
"A $12,000 credit transaction occurred in Los Angeles for a 30-year-old with low income. Should I be concerned?",
|
159 |
+
"Verify a $5,500 debit in New York by a 22-year-old medium income individual"
|
160 |
+
],
|
161 |
+
inputs=nl_input
|
162 |
+
)
|
163 |
+
nl_input.submit(fn=process_nl_query, inputs=nl_input, outputs=nl_output)
|
164 |
+
|
165 |
+
with gr.Tab("Data Insights"):
|
166 |
+
gr.Markdown("### Fraud Pattern Analysis")
|
167 |
+
gr.DataFrame(data[data['Fraud'] == 1].describe())
|
168 |
+
with gr.Row():
|
169 |
+
gr.Plot(plot_fraud_by_city)
|
170 |
+
gr.Plot(plot_fraud_by_income)
|
171 |
+
gr.Plot(plot_amount_vs_age)
|
172 |
+
|
173 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
fuzzywuzzy
|
8 |
+
python-Levenshtein
|