Spaces:
Runtime error
Runtime error
File size: 21,380 Bytes
af382f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import copy
import os
from myagent import Node, MyAgent, ask_gpt, Client
from typing import List, Tuple
from PROMPT import NOVEL_PROMPT
from myutils import print_log, new_parse
import json
class FirstNode(Node):
def __init__(
self,
name: str,
agents: List[MyAgent],
start_agent_name: str,
start_agent_query: str,
summary_agent: MyAgent = None,
save: bool=True,
stream_output: bool=True,
output_func=None,
):
super(FirstNode, self).__init__(agents, summary_agent, save)
self.name = name
self.output_func = output_func
self.stream_output = stream_output
self.start_agent_name = start_agent_name
self.start_agent_query = start_agent_query
if self.stream_output:
print_log("stream output ......")
assert self.start_agent_name in self.agents, \
f"invalid agent name `{self.start_agent_name}`"
def start(self):
self.agents[self.start_agent_name].prepare_message(
self.start_agent_query+"\n"+self.agents[self.start_agent_name].query
)
self.agents[self.start_agent_name].output_message(
recorder=self.recorder, stream=self.stream_output, output_func=self.output_func,
node_name=self.name
)
# if self.stream_output:
# print(f"【{self.start_agent_name}】 ", end="")
# for chunk in self.agents[self.start_agent_name].send_message(recorder=self.recorder, stream=self.stream_output):
# if chunk is not None:
# print(chunk, end="")
# print()
# else:
# self.agents[self.start_agent_name].send_message(recorder=self.recorder, stream=self.stream_output)
# self.print(agent_name=self.start_agent_name)
def communicate(self):
for turn in range(2):
for agent_name in ["Zoe", "Abby", "Elmo"]:
history = self.recorder.prepare(
agent_name=agent_name,
agents=self.agents,
return_dict=False
)
query = self.agents[agent_name].query
if isinstance(history, str):
history = f"The following are the conversations of others, with what someone says wrapped in `<name>...</name>`: \n{history}\n{query}"
elif isinstance(history, list):
history.append({"role": "user", "content": query})
self.agents[agent_name].prepare_message(
history
)
self.agents[agent_name].output_message(
recorder=self.recorder, stream=self.stream_output,
output_func=self.output_func, node_name=self.name
)
# if not self.stream_output:
# self.agents[agent_name].send_message(
# recorder=self.recorder, stream=self.stream_output)
# self.print(agent_name=agent_name)
# else:
# print(f"【{agent_name}】 ", end="")
# for chunk in self.agents[agent_name].send_message(
# recorder=self.recorder, stream=self.stream_output):
# if chunk is not None:
# print(chunk, end="")
# print()
def end(self):
temperature_copy = MyAgent.TEMPERATURE
MyAgent.TEMPERATURE = 0
message: str = self.summary_agent.query.format(
self.recorder.prepare(agent_name="all", agents=self.agents, return_dict=False)
)
self.summary_agent.prepare_message(message)
self.summary_agent.output_message(
recorder=self.recorder, stream=self.stream_output,
output_func=self.output_func, node_name=self.name
)
# if not self.stream_output:
# self.summary_agent.send_message(recorder=self.recorder, stream=self.stream_output)
# print(f"【summary】{self.summary_agent.get_message(index=-1)}")
# else:
# print("【summary】 ", end="")
# for
MyAgent.TEMPERATURE = temperature_copy
content = self.summary_agent.get_message(index=-1)
# start to parse ====================================================
data_dict = new_parse(content, labels=[], return_dict=True)
# 1. parse character
characters_card: dict = {}
for key in data_dict['CHARACTERS']:
"""default success"""
if 'CHARACTER' in key:
characters_card[
data_dict['CHARACTERS'][key]['NAME']
] = {
"role_name": data_dict['CHARACTERS'][key]['NAME'],
"gender": data_dict['CHARACTERS'][key]['GENDER'],
"age": data_dict['CHARACTERS'][key]['AGE'],
"occupation": data_dict['CHARACTERS'][key]['WORK'],
"personality": data_dict['CHARACTERS'][key]['PERSONALITY'],
"speaking_style": data_dict['CHARACTERS'][key]['SPEECH STYLE'],
"relation_with_others": data_dict['CHARACTERS'][key]['RELATION'],
"background": data_dict['CHARACTERS'][key]['BACKGROUND']
}
# file_name = "character_settings.json"
try:
os.mkdir("novel_outline")
except:
pass
file_name = "./novel_outline/character_settings.json"
with open(file_name, "w") as json_file:
json.dump(characters_card, json_file, ensure_ascii=False)
print("Save Successfully")
# 2. converted to markdown
return_content = "<CHARACTERS>\n# Character\n> There are a total of {} characters\n\n".format(
data_dict['CHARACTERS']['TOTAL NUMBER'],
)
cnt = 1
for key in data_dict['CHARACTERS']:
"""default success"""
if 'CHARACTER' in key:
return_content += "## Character{}\n- Gender: {}\n- Name: {}\n- Age: {}\n- Work: {}\n- Personality: {}\n- Speaking Style: {}\n- Relation with Others: {}\n- Background: {}\n\n".format(
cnt, data_dict['CHARACTERS'][key]['GENDER'], data_dict['CHARACTERS'][key]['NAME'],
data_dict['CHARACTERS'][key]['AGE'],
data_dict['CHARACTERS'][key]['WORK'],
data_dict['CHARACTERS'][key]['PERSONALITY'], data_dict['CHARACTERS'][key]['SPEECH STYLE'],
data_dict['CHARACTERS'][key]['RELATION'],
data_dict['CHARACTERS'][key]['BACKGROUND']
)
cnt += 1
return_content += "</CHARACTERS>\n\n<OUTLINE>\n# outline\n> There are a total of {} chapters\n\n".format(
data_dict['OUTLINE']['TOTAL NUMBER']
)
cnt = 1
for key in data_dict['OUTLINE']:
if 'SECTION' in key:
return_content += "## Chapter {} {}\n- Characters Involved: {}\n- Story Summary: {}\n\n".format(
cnt, data_dict['OUTLINE'][key]['TITLE'], data_dict['OUTLINE'][key]['CHARACTER INVOLVED'],
data_dict['OUTLINE'][key]['ABSTRACT']
)
cnt += 1
return_content += "</OUTLINE>"
return return_content
def print(self, agent_name):
print(f"【{agent_name}】{self.agents[agent_name].get_message(index=-1)}")
class SecondNode(Node):
def __init__(
self,
name: str,
agents: List[MyAgent],
start_agent_name: str,
start_agent_query: str,
summary_agent: MyAgent = None,
save: bool=True,
stream_output:bool=True,
output_func=None
):
super(SecondNode, self).__init__(agents, summary_agent, save)
self.name = name
self.stream_output = stream_output
self.start_agent_name = start_agent_name
self.start_agent_query = start_agent_query
self.output_func = output_func
assert self.start_agent_name in self.agents, \
f"invalid agent name `{self.start_agent_name}`"
self.temperature = [0.3, 0.3, 0.3]
if self.stream_output:
print("streaming output ......")
def start(self):
MyAgent.TEMPERATURE = self.temperature[0]
self.agents[self.start_agent_name].prepare_message(
self.start_agent_query+"\n"+self.agents[self.start_agent_name].query
)
self.agents[self.start_agent_name].output_message(
recorder=self.recorder, stream=self.stream_output, output_func=self.output_func,
node_name=self.name
)
# self.agents[self.start_agent_name].send_message(recorder=self.recorder)
# print(f"【{self.start_agent_name}】{self.agents[self.start_agent_name].get_message(index=-1)}")
# self.print(agent_name=self.start_agent_name)
def communicate(self):
MyAgent.TEMPERATURE = self.temperature[1]
"""to store output,e.g. Chapter i"""
self.output_memory = []
for turn in range(2):
for agent_name in ["Oscar", "Bert", "Ernie"]:
if agent_name == "Bert":
MyAgent.TEMPERATURE = 0.3
else:
MyAgent.TEMPERATURE = turn*0.1 + 0.5
history = self.recorder.prepare(
agent_name=agent_name,
agents=self.agents,
return_dict=False
)
# print(f"===========START {agent_name}==========")
# print(history)
# print("================END===============")
query = self.agents[agent_name].query
if isinstance(history, str):
history = f"The following are the conversations of others, with what someone says wrapped in `<name>...</name>`: \n{history}\n{query}"
elif isinstance(history, list):
history.append({"role": "user", "content": query})
self.agents[agent_name].prepare_message(
history
)
self.agents[agent_name].output_message(
recorder=self.recorder, stream=self.stream_output,
output_func=self.output_func, node_name=self.name
)
# self.agents[agent_name].send_message(recorder=self.recorder)
# self.print(agent_name=agent_name)
def end(self):
MyAgent.TEMPERATURE = self.temperature[2]
content = self.agents["Bert"].get_message(-1)
index = -1
while "none" in content.lower():
index -= 1
content = self.agents["Bert"].get_message(index)
try:
def save(data: dict):
for idx, (key, value) in enumerate(data.items()):
# file_name = f"{self.name.replace(' ', '')}-plot-{idx+1}.json"
try:
os.mkdir("novel_outline")
except:
pass
file_name = f"./novel_outline/{self.name.replace(' ', '')}-plot-{idx+1}.json"
_characters:str = value["CHARACTER INVOLVED"]
characters = ask_gpt(
system_prompt="You are very good at structuring text, please make sure you structure your output as follows, with no other extra chars, in addition, extract from the given text as much as possible, rather than summarizing.",
input=f"""Here is a sentence: "{_characters}"\n What are the names of the people in the sentence above? Please use a semicolon to separate the names, e.g. "name 1; name 2", taking care not to add any words before or after."""
).split(";")
characters = [c.strip() for c in characters]
print("mike",characters)
output = {
"plot": value["DESCRIPTION"],
"characters": characters #value["CHARACTER INVOLVED"]
}
with open(file_name, "w") as json_file:
json.dump(output, json_file, ensure_ascii=False)
# json_file.writelines(output)
# data_dict = parse(copy.deepcopy(content), labels=["CONTENT"], return_dict=True)["CONTENT"]
data_dict = new_parse(content, labels=["CONTENT"], return_dict=True)["CONTENT"]
if len(data_dict) == 0 or data_dict is None:
assert False
save(data_dict)
data_str = new_parse(content, labels=["CONTENT"], return_dict=False)
if len(data_str) == 0:
assert False
print_log("Save successfully")
print(data_str)
if self.output_func:
self.output_func(0, "Recorder", data_str[0], self.name)
self.output_func(21, "Recorder", data_str[1:], self.name)
return data_str
except Exception as e:
raise e
def print(self, agent_name):
print(f"【{agent_name}】{self.agents[agent_name].get_message(index=-1)}")
def generate_first_agents(task_prompt:str=None) -> Tuple[List[MyAgent], MyAgent]:
prompts_set = NOVEL_PROMPT["Node 1"]
if task_prompt is not None:
print_log("The default task prompt has been replaced!")
NOVEL_PROMPT["Node 1"]["task"] = task_prompt
prompts_task = prompts_set["task"]
prompts_agents = prompts_set["agents"]
agents_list = []
for agent_name in prompts_agents:
agents_list.append(
MyAgent(
name=agent_name,
SYSTEM_PROMPT=prompts_agents[agent_name]["system"].format(
prompts_task, prompts_agents[agent_name]["output"]
),
query=prompts_agents[agent_name]["query"].format(
prompts_agents[agent_name]["output"]
)
)
)
summary_agent = MyAgent(
name="summary",
SYSTEM_PROMPT=prompts_set["summary"]["system"].format(
prompts_task, prompts_set["summary"]["output"]
),
query=prompts_set["summary"]["query"]
)
return agents_list, summary_agent
def generate_second_agents() -> Tuple[List[MyAgent], MyAgent]:
prompts_set = NOVEL_PROMPT["Node 2"]
prompts_task = prompts_set["task"] # .format(outline, other)
prompts_agents = prompts_set["agents"]
agents_list = []
for agent_name in prompts_agents:
agents_list.append(
MyAgent(
name=agent_name,
SYSTEM_PROMPT=prompts_agents[agent_name]["system"].format(
prompts_task, prompts_agents[agent_name]["output"]
),
query=prompts_agents[agent_name]["query"].format(
prompts_agents[agent_name]["output"]
)
)
)
summary_agent = MyAgent(
name="summary",
SYSTEM_PROMPT=prompts_set["summary"]["system"].format(
prompts_task, prompts_set["summary"]["output"]
),
query=prompts_set["summary"]["query"]
)
return agents_list, summary_agent
def run_node_1(stream_output:bool=False, output_func=None,
start_agent_name:str="Elmo", start_agent_query:str="Let's start by writing a first draft of the character settings.",
task_prompt=None):
print("node 1 start ...")
first_agents, first_summary = generate_first_agents(task_prompt=task_prompt)
first_node = FirstNode(
name="Node 1",
agents=first_agents,
summary_agent=first_summary,
save=True,
start_agent_name=start_agent_name,
start_agent_query=start_agent_query,
stream_output=stream_output,
output_func=output_func,
)
output = first_node.run()
print("node 1 done ...")
return output
def run_node_2(outline, node_start_index=2, stream_output:bool=False, output_func=None):
num2cn = ["ONE","TWO","THREE","FOUR","FIVE","SIX","SEVEN","EIGHT","NINE","TEN","ELEVEN","TWELVE"]
def generate_task_end_prompt(memory: list) -> str:
if len(memory) == 0:
return "\nThere are 5 chapters in total, please enrich the plot of the first chapter according to the outline above, taking care to be storytelling, logical, mainly in third person point of view, not involving description of dialogues, and without empty words. The plot of the first chapter is at least 800 words."
else:
start_prompt = f"\nThe following are the contents of chapter {', '.join(num2cn[0:len(memory)])}, which have been expanded: \n<EXPANDED>\n"
for i in range(len(memory)):
start_prompt = f"\n{start_prompt}<CHAPTER {i+1}>\n{memory[i]}\n</CHAPTER {i+1}>"
start_prompt += "\n</EXPANDED>\n"
end_prompt = f"\nPlease, based on the outline above and the content of chapter {', '.join(num2cn[0:len(memory)])}, which have been expanded, to enrich the plot of chapter {num2cn[len(memory)]}, " \
f"Content is noted to be storytelling, logical, and in the third person point of view, not involving descriptions of dialog, and without empty words. The plot of chapter {num2cn[len(memory)]} is at least 800 words."
return start_prompt + end_prompt
output_memory = []
start_agent_names = ["Ernie", "Ernie", "Ernie", "Ernie", "Ernie"]
start_agent_queries = [f"Let's start by expanding on chapter {num2cn[i]} as required" for i in range(5)]
ORIGIN_TASK_PROMPT = NOVEL_PROMPT["Node 2"]["task"]
ORIGIN_QUERY_PROMPT = {}
ORIGIN_SUMMARY_PROMPT = NOVEL_PROMPT["Node 2"]["summary"]["query"]
for idx in range(3):
node_idx = idx + node_start_index
NOVEL_PROMPT["Node 2"]["task"] = ORIGIN_TASK_PROMPT.format(
outline,
generate_task_end_prompt(output_memory)
)
for agent_name in NOVEL_PROMPT["Node 2"]["agents"]:
if agent_name not in ORIGIN_QUERY_PROMPT:
ORIGIN_QUERY_PROMPT[agent_name] = NOVEL_PROMPT["Node 2"]["agents"][agent_name]["query"]
NOVEL_PROMPT["Node 2"]["agents"][agent_name]["query"] = ORIGIN_QUERY_PROMPT[agent_name].format(
num2cn[idx], "{}"
)
NOVEL_PROMPT["Node 2"]["summary"]["query"] = ORIGIN_SUMMARY_PROMPT.format(num2cn[idx], num2cn[idx], "{}")
start_agent_name = start_agent_names[idx]
start_agent_query = start_agent_queries[idx]
print(f"node {node_idx} starting ......")
second_agents, second_summary = generate_second_agents()
second_node = SecondNode(
name=f"Node {node_idx}",
agents=second_agents,
summary_agent=second_summary,
save=True,
start_agent_name=start_agent_name,
start_agent_query=start_agent_query,
stream_output=stream_output,
output_func=output_func
)
output_memory.append(
second_node.run()
)
def show_in_gradio(state, name, chunk, node_name):
if state == 30:
Client.server.send(str([state, name, chunk, node_name])+"<SELFDEFINESEP>")
return
if name.lower() in ["summary", "recorder"]:
"""It is recorder"""
name = "Recorder"
if state == 0:
state = 22
else:
state = 21
else:
if Client.current_node != node_name and state == 0:
state = 12
Client.current_node = node_name
elif Client.current_node != node_name and state != 0:
assert False
else:
state = 10 + state
Client.server.send(str([state, name, chunk, node_name])+"<SELFDEFINESEP>")
if __name__ == '__main__':
MyAgent.SIMULATION = False
MyAgent.TEMPERATURE = 1.0
stream_output = True
output_func = show_in_gradio
output_func = None
if output_func is not None:
global client
client = Client()
client.listening_for_start()
Client.server = client.start_server()
next(Client.server)
outline = run_node_1(
stream_output=stream_output,
output_func=output_func,
start_agent_name=Client.cache["start_agent_name"],
start_agent_query=Client.cache["start_agent_query"],
task_prompt=Client.cache["task"]
)
else:
outline = run_node_1(
stream_output=stream_output,
output_func=output_func
)
print(outline)
# assert False
run_node_2(outline, stream_output=stream_output, output_func=output_func)
print("done")
|