File size: 7,629 Bytes
2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 d695864 2ee7bf6 ae58da9 d695864 ae58da9 d695864 ae58da9 d695864 ae58da9 d695864 ae58da9 d695864 ae58da9 d695864 ae58da9 2ee7bf6 bc146d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# modules/database/discourse_mongo_db.py
# Importaciones estándar
import io
import base64
from datetime import datetime, timezone
import logging
# Importaciones de terceros
import matplotlib.pyplot as plt
from .mongo_db import (
get_collection,
insert_document,
find_documents,
update_document,
delete_document
)
# Configuración del logger
logger = logging.getLogger(__name__)
COLLECTION_NAME = 'student_discourse_analysis'
########################################################################
def store_student_discourse_result(username, text1, text2, analysis_result):
"""
Guarda el resultado del análisis de discurso en MongoDB.
Los gráficos ya deben venir en formato bytes.
"""
try:
logger.info(f"Almacenando análisis de discurso para {username}")
# Los gráficos ya vienen en bytes, solo codificar a base64 para almacenamiento
graph1_data = None
graph2_data = None
combined_graph_data = None
# Codificar graph1 si existe
if 'graph1' in analysis_result and analysis_result['graph1'] is not None:
try:
graph1_data = base64.b64encode(analysis_result['graph1']).decode('utf-8')
logger.info(f"Graph1 codificado en base64 ({len(graph1_data)} caracteres)")
except Exception as e:
logger.error(f"Error al codificar gráfico 1: {str(e)}")
# Codificar graph2 si existe
if 'graph2' in analysis_result and analysis_result['graph2'] is not None:
try:
graph2_data = base64.b64encode(analysis_result['graph2']).decode('utf-8')
logger.info(f"Graph2 codificado en base64 ({len(graph2_data)} caracteres)")
except Exception as e:
logger.error(f"Error al codificar gráfico 2: {str(e)}")
# Codificar combined_graph si existe
if 'combined_graph' in analysis_result and analysis_result['combined_graph'] is not None:
try:
combined_graph_data = base64.b64encode(analysis_result['combined_graph']).decode('utf-8')
logger.info(f"Combined_graph codificado en base64 ({len(combined_graph_data)} caracteres)")
except Exception as e:
logger.error(f"Error al codificar gráfico combinado: {str(e)}")
# Crear documento para MongoDB
analysis_document = {
'username': username,
'timestamp': datetime.now(timezone.utc).isoformat(),
'text1': text1,
'text2': text2,
'analysis_type': 'discourse',
'key_concepts1': analysis_result.get('key_concepts1', []),
'key_concepts2': analysis_result.get('key_concepts2', []),
'graph1': graph1_data,
'graph2': graph2_data,
'combined_graph': combined_graph_data
}
# Insertar en MongoDB
result = insert_document(COLLECTION_NAME, analysis_document)
if result:
logger.info(f"Análisis del discurso guardado con ID: {result}")
return True
logger.error("No se pudo insertar el documento en MongoDB")
return False
except Exception as e:
logger.error(f"Error al guardar el análisis del discurso: {str(e)}")
return False
#################################################################################
# Corrección 1: Actualizar get_student_discourse_analysis para recuperar todos los campos necesarios
def get_student_discourse_analysis(username, limit=10):
"""
Recupera los análisis del discurso de un estudiante.
"""
try:
# Obtener la colección
collection = get_collection(COLLECTION_NAME)
if collection is None:
logger.error("No se pudo obtener la colección discourse")
return []
# Consulta
query = {
"username": username,
"analysis_type": "discourse"
}
# NO usar projection - recuperar todos los campos
# Ejecutar consulta
cursor = collection.find(query).sort("timestamp", -1)
if limit:
cursor = cursor.limit(limit)
# Convertir cursor a lista
results = list(cursor)
logger.info(f"Recuperados {len(results)} análisis del discurso para {username}")
# Decodificar gráficos de base64 a bytes para su uso en la aplicación
for result in results:
# Decodificar graph1
if 'graph1' in result and result['graph1']:
try:
result['graph1'] = base64.b64decode(result['graph1'])
except Exception as e:
logger.error(f"Error decodificando graph1: {str(e)}")
result['graph1'] = None
# Decodificar graph2
if 'graph2' in result and result['graph2']:
try:
result['graph2'] = base64.b64decode(result['graph2'])
except Exception as e:
logger.error(f"Error decodificando graph2: {str(e)}")
result['graph2'] = None
# Decodificar combined_graph
if 'combined_graph' in result and result['combined_graph']:
try:
result['combined_graph'] = base64.b64decode(result['combined_graph'])
except Exception as e:
logger.error(f"Error decodificando combined_graph: {str(e)}")
result['combined_graph'] = None
return results
except Exception as e:
logger.error(f"Error recuperando análisis del discurso: {str(e)}")
return []
#####################################################################################
def get_student_discourse_data(username):
"""
Obtiene un resumen de los análisis del discurso de un estudiante.
"""
try:
analyses = get_student_discourse_analysis(username, limit=None)
formatted_analyses = []
for analysis in analyses:
formatted_analysis = {
'timestamp': analysis['timestamp'],
'text1': analysis.get('text1', ''),
'text2': analysis.get('text2', ''),
'key_concepts1': analysis.get('key_concepts1', []),
'key_concepts2': analysis.get('key_concepts2', [])
}
formatted_analyses.append(formatted_analysis)
return {'entries': formatted_analyses}
except Exception as e:
logger.error(f"Error al obtener datos del discurso: {str(e)}")
return {'entries': []}
###########################################################################
def update_student_discourse_analysis(analysis_id, update_data):
"""
Actualiza un análisis del discurso existente.
"""
try:
query = {"_id": analysis_id}
update = {"$set": update_data}
return update_document(COLLECTION_NAME, query, update)
except Exception as e:
logger.error(f"Error al actualizar análisis del discurso: {str(e)}")
return False
###########################################################################
def delete_student_discourse_analysis(analysis_id):
"""
Elimina un análisis del discurso.
"""
try:
query = {"_id": analysis_id}
return delete_document(COLLECTION_NAME, query)
except Exception as e:
logger.error(f"Error al eliminar análisis del discurso: {str(e)}")
return False |