Lab1UK / modules /database /discourse_mongo_db.py
AIdeaText's picture
Update modules/database/discourse_mongo_db.py
1fb91b8 verified
raw
history blame
5.77 kB
# modules/database/discourse_mongo_db.py
# Importaciones estándar
import io
import base64
from datetime import datetime, timezone
import logging
# Importaciones de terceros
import matplotlib.pyplot as plt
from .mongo_db import (
get_collection,
insert_document,
find_documents,
update_document,
delete_document
)
# Configuración del logger
logger = logging.getLogger(__name__)
COLLECTION_NAME = 'student_discourse_analysis'
########################################################################
def store_student_discourse_result(username, text1, text2, analysis_result):
"""
Guarda el resultado del análisis de discurso en MongoDB.
"""
try:
# Verificar que el resultado contenga bytes de gráficos
if not analysis_result.get('success', False):
logger.error("No se puede guardar un análisis fallido")
return False
# Preparar el documento para MongoDB
document = {
'username': username,
'timestamp': datetime.now(timezone.utc).isoformat(),
'text1': text1,
'text2': text2,
'key_concepts1': analysis_result.get('key_concepts1', []),
'key_concepts2': analysis_result.get('key_concepts2', [])
}
# Codificar gráficos a base64
if 'graph1' in analysis_result and isinstance(analysis_result['graph1'], bytes):
document['graph1'] = base64.b64encode(analysis_result['graph1']).decode('utf-8')
if 'graph2' in analysis_result and isinstance(analysis_result['graph2'], bytes):
document['graph2'] = base64.b64encode(analysis_result['graph2']).decode('utf-8')
# Crear un gráfico combinado si se desea (opcional)
if 'graph1' in document and 'graph2' in document:
document['combined_graph'] = document['graph1'] # O alguna combinación
# Guardar en MongoDB
collection = get_collection('student_discourse_analysis')
if not collection:
logger.error("No se pudo obtener la colección")
return False
result = collection.insert_one(document)
logger.info(f"Análisis de discurso guardado con ID: {result.inserted_id}")
return True
except Exception as e:
logger.error(f"Error guardando análisis de discurso: {str(e)}")
return False
#################################################################################
# Corrección 1: Actualizar get_student_discourse_analysis para recuperar todos los campos necesarios
def get_student_discourse_analysis(username, limit=10):
"""
Recupera los análisis del discurso de un estudiante.
"""
try:
collection = get_collection('student_discourse_analysis')
if not collection:
logger.error("No se pudo obtener la colección")
return []
query = {"username": username}
documents = list(collection.find(query).sort("timestamp", -1).limit(limit))
# Decodificar gráficos de base64 a bytes
for doc in documents:
try:
if 'graph1' in doc and doc['graph1']:
doc['graph1'] = base64.b64decode(doc['graph1'])
if 'graph2' in doc and doc['graph2']:
doc['graph2'] = base64.b64decode(doc['graph2'])
if 'combined_graph' in doc and doc['combined_graph']:
doc['combined_graph'] = base64.b64decode(doc['combined_graph'])
except Exception as decode_error:
logger.error(f"Error decodificando gráficos: {str(decode_error)}")
return documents
except Exception as e:
logger.error(f"Error recuperando análisis de discurso: {str(e)}")
return []
#####################################################################################
def get_student_discourse_data(username):
"""
Obtiene un resumen de los análisis del discurso de un estudiante.
"""
try:
analyses = get_student_discourse_analysis(username, limit=None)
formatted_analyses = []
for analysis in analyses:
formatted_analysis = {
'timestamp': analysis['timestamp'],
'text1': analysis.get('text1', ''),
'text2': analysis.get('text2', ''),
'key_concepts1': analysis.get('key_concepts1', []),
'key_concepts2': analysis.get('key_concepts2', [])
}
formatted_analyses.append(formatted_analysis)
return {'entries': formatted_analyses}
except Exception as e:
logger.error(f"Error al obtener datos del discurso: {str(e)}")
return {'entries': []}
###########################################################################
def update_student_discourse_analysis(analysis_id, update_data):
"""
Actualiza un análisis del discurso existente.
"""
try:
query = {"_id": analysis_id}
update = {"$set": update_data}
return update_document(COLLECTION_NAME, query, update)
except Exception as e:
logger.error(f"Error al actualizar análisis del discurso: {str(e)}")
return False
###########################################################################
def delete_student_discourse_analysis(analysis_id):
"""
Elimina un análisis del discurso.
"""
try:
query = {"_id": analysis_id}
return delete_document(COLLECTION_NAME, query)
except Exception as e:
logger.error(f"Error al eliminar análisis del discurso: {str(e)}")
return False