|
|
|
|
|
import streamlit as st |
|
import logging |
|
from ..utils.widget_utils import generate_unique_key |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from ..database.current_situation_mongo_db import store_current_situation_result |
|
|
|
|
|
from translations import get_translations |
|
|
|
|
|
try: |
|
from .claude_recommendations import display_personalized_recommendations |
|
except ImportError: |
|
|
|
def display_personalized_recommendations(text, metrics, text_type, lang_code, t): |
|
|
|
warning = t.get('module_not_available', "Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.") |
|
st.warning(warning) |
|
|
|
from .current_situation_analysis import ( |
|
analyze_text_dimensions, |
|
analyze_clarity, |
|
analyze_vocabulary_diversity, |
|
analyze_cohesion, |
|
analyze_structure, |
|
get_dependency_depths, |
|
normalize_score, |
|
generate_sentence_graphs, |
|
generate_word_connections, |
|
generate_connection_paths, |
|
create_vocabulary_network, |
|
create_syntax_complexity_graph, |
|
create_cohesion_heatmap |
|
) |
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif' |
|
plt.rcParams['axes.grid'] = True |
|
plt.rcParams['axes.spines.top'] = False |
|
plt.rcParams['axes.spines.right'] = False |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
TEXT_TYPES = { |
|
'academic_article': { |
|
|
|
'thresholds': { |
|
'vocabulary': {'min': 0.70, 'target': 0.85}, |
|
'structure': {'min': 0.75, 'target': 0.90}, |
|
'cohesion': {'min': 0.65, 'target': 0.80}, |
|
'clarity': {'min': 0.70, 'target': 0.85} |
|
} |
|
}, |
|
'student_essay': { |
|
'thresholds': { |
|
'vocabulary': {'min': 0.60, 'target': 0.75}, |
|
'structure': {'min': 0.65, 'target': 0.80}, |
|
'cohesion': {'min': 0.55, 'target': 0.70}, |
|
'clarity': {'min': 0.60, 'target': 0.75} |
|
} |
|
}, |
|
'general_communication': { |
|
'thresholds': { |
|
'vocabulary': {'min': 0.50, 'target': 0.65}, |
|
'structure': {'min': 0.55, 'target': 0.70}, |
|
'cohesion': {'min': 0.45, 'target': 0.60}, |
|
'clarity': {'min': 0.50, 'target': 0.65} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t): |
|
""" |
|
Interfaz simplificada con gráfico de radar para visualizar métricas. |
|
""" |
|
|
|
logger.info(f"Idioma: {lang_code}") |
|
logger.info(f"Claves en t: {list(t.keys())}") |
|
|
|
|
|
if 'text_input' not in st.session_state: |
|
st.session_state.text_input = "" |
|
if 'text_area' not in st.session_state: |
|
st.session_state.text_area = "" |
|
if 'show_results' not in st.session_state: |
|
st.session_state.show_results = False |
|
if 'current_doc' not in st.session_state: |
|
st.session_state.current_doc = None |
|
if 'current_metrics' not in st.session_state: |
|
st.session_state.current_metrics = None |
|
if 'current_recommendations' not in st.session_state: |
|
st.session_state.current_recommendations = None |
|
|
|
try: |
|
|
|
with st.container(): |
|
input_col, results_col = st.columns([1,2]) |
|
|
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
/* Hacer que la columna tenga una altura definida */ |
|
[data-testid="column"] { |
|
min-height: 900px; |
|
height: 100vh; /* 100% del alto visible de la ventana */ |
|
} |
|
|
|
/* Hacer que el formulario ocupe el espacio disponible en la columna */ |
|
.stForm { |
|
height: calc(100% - 40px); /* Ajuste por márgenes y paddings */ |
|
display: flex; |
|
flex-direction: column; |
|
} |
|
|
|
/* Hacer que el área de texto se expanda dentro del formulario */ |
|
.stForm .stTextArea { |
|
flex: 1; |
|
display: flex; |
|
flex-direction: column; |
|
} |
|
|
|
/* El textarea en sí debe expandirse */ |
|
.stForm .stTextArea textarea { |
|
flex: 1; |
|
min-height: 750px !important; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with input_col: |
|
with st.form(key=f"text_input_form_{lang_code}"): |
|
text_input = st.text_area( |
|
t.get('input_prompt', "Escribe o pega tu texto aquí:"), |
|
height=800, |
|
key=f"text_area_{lang_code}", |
|
value=st.session_state.text_input, |
|
help=t.get('help', "Este texto será analizado para darte recomendaciones personalizadas") |
|
) |
|
|
|
submit_button = st.form_submit_button( |
|
t.get('analyze_button', "Analizar mi escritura"), |
|
type="primary", |
|
use_container_width=True |
|
) |
|
|
|
if submit_button: |
|
if text_input.strip(): |
|
st.session_state.text_input = text_input |
|
|
|
|
|
|
|
try: |
|
with st.spinner(t.get('processing', "Analizando...")): |
|
doc = nlp_models[lang_code](text_input) |
|
metrics = analyze_text_dimensions(doc) |
|
|
|
storage_success = store_current_situation_result( |
|
username=st.session_state.username, |
|
text=text_input, |
|
metrics=metrics, |
|
feedback=None |
|
) |
|
|
|
if not storage_success: |
|
logger.warning("No se pudo guardar el análisis en la base de datos") |
|
|
|
st.session_state.current_doc = doc |
|
st.session_state.current_metrics = metrics |
|
st.session_state.show_results = True |
|
|
|
except Exception as e: |
|
logger.error(f"Error en análisis: {str(e)}") |
|
st.error(t.get('analysis_error', "Error al analizar el texto")) |
|
|
|
|
|
with results_col: |
|
if st.session_state.show_results and st.session_state.current_metrics is not None: |
|
|
|
st.markdown(f"### {t.get('text_type_header', 'Tipo de texto')}") |
|
|
|
|
|
text_type_options = {} |
|
for text_type_key in TEXT_TYPES.keys(): |
|
|
|
default_names = { |
|
'academic_article': 'Academic Article' if lang_code == 'en' else 'Артикул академічний' if lang_code == 'uk' else 'Artículo Académico', |
|
'student_essay': 'Student Essay' if lang_code == 'en' else 'Студентське есе' if lang_code == 'uk' else 'Trabajo Universitario', |
|
'general_communication': 'General Communication' if lang_code == 'en' else 'Загальна комунікація' if lang_code == 'uk' else 'Comunicación General' |
|
} |
|
text_type_options[text_type_key] = default_names.get(text_type_key, text_type_key) |
|
|
|
text_type = st.radio( |
|
label=t.get('text_type_header', "Tipo de texto"), |
|
options=list(TEXT_TYPES.keys()), |
|
format_func=lambda x: text_type_options.get(x, x), |
|
horizontal=True, |
|
key="text_type_radio", |
|
label_visibility="collapsed", |
|
help=t.get('text_type_help', "Selecciona el tipo de texto para ajustar los criterios de evaluación") |
|
) |
|
|
|
st.session_state.current_text_type = text_type |
|
|
|
|
|
diagnosis_tab = "Diagnosis" if lang_code == 'en' else "Діагностика" if lang_code == 'uk' else "Diagnóstico" |
|
recommendations_tab = "Recommendations" if lang_code == 'en' else "Рекомендації" if lang_code == 'uk' else "Recomendaciones" |
|
|
|
subtab1, subtab2 = st.tabs([diagnosis_tab, recommendations_tab]) |
|
|
|
|
|
with subtab1: |
|
display_diagnosis( |
|
metrics=st.session_state.current_metrics, |
|
text_type=text_type, |
|
lang_code=lang_code, |
|
t=t |
|
) |
|
|
|
|
|
with subtab2: |
|
|
|
display_personalized_recommendations( |
|
text=text_input, |
|
metrics=st.session_state.current_metrics, |
|
text_type=text_type, |
|
lang_code=lang_code, |
|
t=t |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en interfaz principal: {str(e)}") |
|
st.error(t.get('error_interface', "Ocurrió un error al cargar la interfaz")) |
|
|
|
|
|
|
|
def display_diagnosis(metrics, text_type=None, lang_code='es', t=None): |
|
""" |
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar. |
|
""" |
|
try: |
|
|
|
if t is None: |
|
t = {} |
|
|
|
|
|
dimension_labels = { |
|
'es': { |
|
'title': "Tipo de texto", |
|
'vocabulary': "Vocabulario", |
|
'structure': "Estructura", |
|
'cohesion': "Cohesión", |
|
'clarity': "Claridad", |
|
'improvement': "⚠️ Por mejorar", |
|
'acceptable': "📈 Aceptable", |
|
'optimal': "✅ Óptimo", |
|
'target': "Meta: {:.2f}" |
|
}, |
|
'en': { |
|
'title': "Text Type", |
|
'vocabulary': "Vocabulary", |
|
'structure': "Structure", |
|
'cohesion': "Cohesion", |
|
'clarity': "Clarity", |
|
'improvement': "⚠️ Needs improvement", |
|
'acceptable': "📈 Acceptable", |
|
'optimal': "✅ Optimal", |
|
'target': "Target: {:.2f}" |
|
}, |
|
'uk': { |
|
'title': "Тип тексту", |
|
'vocabulary': "Словниковий запас", |
|
'structure': "Структура", |
|
'cohesion': "Зв'язність", |
|
'clarity': "Ясність", |
|
'improvement': "⚠️ Потребує покращення", |
|
'acceptable': "📈 Прийнятно", |
|
'optimal': "✅ Оптимально", |
|
'target': "Ціль: {:.2f}" |
|
} |
|
} |
|
|
|
|
|
labels = dimension_labels.get(lang_code, dimension_labels['es']) |
|
|
|
|
|
text_type = text_type or 'student_essay' |
|
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5]) |
|
|
|
|
|
with metrics_col: |
|
metrics_config = [ |
|
{ |
|
'label': labels['vocabulary'], |
|
'key': 'vocabulary', |
|
'value': metrics['vocabulary']['normalized_score'], |
|
'help': t.get('vocabulary_help', "Riqueza y variedad del vocabulario"), |
|
'thresholds': thresholds['vocabulary'] |
|
}, |
|
{ |
|
'label': labels['structure'], |
|
'key': 'structure', |
|
'value': metrics['structure']['normalized_score'], |
|
'help': t.get('structure_help', "Organización y complejidad de oraciones"), |
|
'thresholds': thresholds['structure'] |
|
}, |
|
{ |
|
'label': labels['cohesion'], |
|
'key': 'cohesion', |
|
'value': metrics['cohesion']['normalized_score'], |
|
'help': t.get('cohesion_help', "Conexión y fluidez entre ideas"), |
|
'thresholds': thresholds['cohesion'] |
|
}, |
|
{ |
|
'label': labels['clarity'], |
|
'key': 'clarity', |
|
'value': metrics['clarity']['normalized_score'], |
|
'help': t.get('clarity_help', "Facilidad de comprensión del texto"), |
|
'thresholds': thresholds['clarity'] |
|
} |
|
] |
|
|
|
|
|
for metric in metrics_config: |
|
value = metric['value'] |
|
if value < metric['thresholds']['min']: |
|
status = labels['improvement'] |
|
color = "inverse" |
|
elif value < metric['thresholds']['target']: |
|
status = labels['acceptable'] |
|
color = "off" |
|
else: |
|
status = labels['optimal'] |
|
color = "normal" |
|
|
|
target_text = labels['target'].format(metric['thresholds']['target']) |
|
|
|
st.metric( |
|
metric['label'], |
|
f"{value:.2f}", |
|
f"{status} ({target_text})", |
|
delta_color=color, |
|
help=metric['help'] |
|
) |
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) |
|
|
|
|
|
with graph_col: |
|
display_radar_chart(metrics_config, thresholds, lang_code) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando resultados: {str(e)}") |
|
st.error(t.get('error_results', "Error al mostrar los resultados")) |
|
|
|
|
|
|
|
def display_radar_chart(metrics_config, thresholds, lang_code='es'): |
|
""" |
|
Muestra el gráfico radar con los resultados. |
|
""" |
|
try: |
|
|
|
legend_translations = { |
|
'es': {'min': 'Mínimo', 'target': 'Meta', 'user': 'Tu escritura'}, |
|
'en': {'min': 'Minimum', 'target': 'Target', 'user': 'Your writing'}, |
|
'uk': {'min': 'Мінімум', 'target': 'Ціль', 'user': 'Ваш текст'} |
|
} |
|
|
|
|
|
translations = legend_translations.get(lang_code, legend_translations['es']) |
|
|
|
|
|
categories = [m['label'] for m in metrics_config] |
|
values_user = [m['value'] for m in metrics_config] |
|
min_values = [m['thresholds']['min'] for m in metrics_config] |
|
target_values = [m['thresholds']['target'] for m in metrics_config] |
|
|
|
|
|
fig = plt.figure(figsize=(8, 8)) |
|
ax = fig.add_subplot(111, projection='polar') |
|
|
|
|
|
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] |
|
angles += angles[:1] |
|
values_user += values_user[:1] |
|
min_values += min_values[:1] |
|
target_values += target_values[:1] |
|
|
|
|
|
ax.set_xticks(angles[:-1]) |
|
ax.set_xticklabels(categories, fontsize=10) |
|
circle_ticks = np.arange(0, 1.1, 0.2) |
|
ax.set_yticks(circle_ticks) |
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) |
|
ax.set_ylim(0, 1) |
|
|
|
|
|
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label=translations['min'], alpha=0.5) |
|
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label=translations['target'], alpha=0.5) |
|
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) |
|
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) |
|
|
|
|
|
ax.plot(angles, values_user, '#3498db', linewidth=2, label=translations['user']) |
|
ax.fill(angles, values_user, '#3498db', alpha=0.2) |
|
|
|
|
|
ax.legend( |
|
loc='upper right', |
|
bbox_to_anchor=(1.3, 1.1), |
|
fontsize=10, |
|
frameon=True, |
|
facecolor='white', |
|
edgecolor='none', |
|
shadow=True |
|
) |
|
|
|
plt.tight_layout() |
|
st.pyplot(fig) |
|
plt.close() |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando gráfico radar: {str(e)}") |
|
st.error("Error al mostrar el gráfico") |