|
|
|
import base64 |
|
import logging |
|
from datetime import datetime, timezone |
|
from ..database.mongo_db import get_collection, insert_document, find_documents |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
COLLECTION_NAME = 'student_discourse_analysis' |
|
|
|
|
|
|
|
def store_student_discourse_result(username, text1, text2, analysis_result): |
|
""" |
|
Guarda el resultado del análisis de discurso en MongoDB. |
|
""" |
|
try: |
|
|
|
if not analysis_result.get('success', False): |
|
logger.error("No se puede guardar un análisis fallido") |
|
return False |
|
|
|
logger.info(f"Almacenando análisis de discurso para {username}") |
|
|
|
|
|
document = { |
|
'username': username, |
|
'timestamp': datetime.now(timezone.utc).isoformat(), |
|
'text1': text1, |
|
'text2': text2, |
|
'key_concepts1': analysis_result.get('key_concepts1', []), |
|
'key_concepts2': analysis_result.get('key_concepts2', []) |
|
} |
|
|
|
|
|
for graph_key in ['graph1', 'graph2', 'combined_graph']: |
|
if graph_key in analysis_result and analysis_result[graph_key] is not None: |
|
if isinstance(analysis_result[graph_key], bytes): |
|
logger.info(f"Codificando {graph_key} como base64") |
|
document[graph_key] = base64.b64encode(analysis_result[graph_key]).decode('utf-8') |
|
logger.info(f"{graph_key} codificado correctamente, longitud: {len(document[graph_key])}") |
|
else: |
|
logger.warning(f"{graph_key} no es de tipo bytes, es: {type(analysis_result[graph_key])}") |
|
else: |
|
logger.info(f"{graph_key} no presente en el resultado del análisis") |
|
|
|
|
|
collection = get_collection(COLLECTION_NAME) |
|
if collection is None: |
|
logger.error("No se pudo obtener la colección") |
|
return False |
|
|
|
result = collection.insert_one(document) |
|
logger.info(f"Análisis de discurso guardado con ID: {result.inserted_id}") |
|
return True |
|
|
|
except Exception as e: |
|
logger.error(f"Error guardando análisis de discurso: {str(e)}") |
|
return False |
|
|
|
|
|
|
|
|
|
|
|
def get_student_discourse_analysis(username, limit=10): |
|
""" |
|
Recupera los análisis del discurso de un estudiante. |
|
""" |
|
try: |
|
logger.info(f"Recuperando análisis de discurso para {username}") |
|
|
|
collection = get_collection(COLLECTION_NAME) |
|
if collection is None: |
|
logger.error("No se pudo obtener la colección") |
|
return [] |
|
|
|
query = {"username": username} |
|
documents = list(collection.find(query).sort("timestamp", -1).limit(limit)) |
|
logger.info(f"Recuperados {len(documents)} documentos de análisis de discurso") |
|
|
|
|
|
for doc in documents: |
|
for graph_key in ['graph1', 'graph2', 'combined_graph']: |
|
if graph_key in doc and doc[graph_key]: |
|
try: |
|
|
|
if isinstance(doc[graph_key], str): |
|
logger.info(f"Decodificando {graph_key} de base64 a bytes") |
|
doc[graph_key] = base64.b64decode(doc[graph_key]) |
|
logger.info(f"{graph_key} decodificado correctamente, tamaño: {len(doc[graph_key])} bytes") |
|
elif not isinstance(doc[graph_key], bytes): |
|
logger.warning(f"{graph_key} no es ni string ni bytes: {type(doc[graph_key])}") |
|
except Exception as decode_error: |
|
logger.error(f"Error decodificando {graph_key}: {str(decode_error)}") |
|
doc[graph_key] = None |
|
|
|
return documents |
|
|
|
except Exception as e: |
|
logger.error(f"Error recuperando análisis de discurso: {str(e)}") |
|
return [] |
|
|
|
|
|
|
|
def get_student_discourse_data(username): |
|
""" |
|
Obtiene un resumen de los análisis del discurso de un estudiante. |
|
""" |
|
try: |
|
analyses = get_student_discourse_analysis(username, limit=None) |
|
formatted_analyses = [] |
|
|
|
for analysis in analyses: |
|
formatted_analysis = { |
|
'timestamp': analysis['timestamp'], |
|
'text1': analysis.get('text1', ''), |
|
'text2': analysis.get('text2', ''), |
|
'key_concepts1': analysis.get('key_concepts1', []), |
|
'key_concepts2': analysis.get('key_concepts2', []) |
|
} |
|
formatted_analyses.append(formatted_analysis) |
|
|
|
return {'entries': formatted_analyses} |
|
|
|
except Exception as e: |
|
logger.error(f"Error al obtener datos del discurso: {str(e)}") |
|
return {'entries': []} |
|
|
|
|
|
def update_student_discourse_analysis(analysis_id, update_data): |
|
""" |
|
Actualiza un análisis del discurso existente. |
|
""" |
|
try: |
|
query = {"_id": analysis_id} |
|
update = {"$set": update_data} |
|
return update_document(COLLECTION_NAME, query, update) |
|
except Exception as e: |
|
logger.error(f"Error al actualizar análisis del discurso: {str(e)}") |
|
return False |
|
|
|
|
|
def delete_student_discourse_analysis(analysis_id): |
|
""" |
|
Elimina un análisis del discurso. |
|
""" |
|
try: |
|
query = {"_id": analysis_id} |
|
return delete_document(COLLECTION_NAME, query) |
|
except Exception as e: |
|
logger.error(f"Error al eliminar análisis del discurso: {str(e)}") |
|
return False |