|
|
|
|
|
|
|
import logging
|
|
import io
|
|
import base64
|
|
from collections import Counter, defaultdict
|
|
|
|
|
|
import streamlit as st
|
|
import spacy
|
|
import networkx as nx
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
from .stopwords import (
|
|
process_text,
|
|
clean_text,
|
|
get_custom_stopwords,
|
|
get_stopwords_for_spacy
|
|
)
|
|
|
|
|
|
|
|
POS_COLORS = {
|
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
|
}
|
|
|
|
POS_TRANSLATIONS = {
|
|
'es': {
|
|
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
|
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
|
|
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
|
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
|
|
'VERB': 'Verbo', 'X': 'Otro',
|
|
},
|
|
'en': {
|
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
|
'VERB': 'Verb', 'X': 'Other',
|
|
},
|
|
'fr': {
|
|
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
|
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
|
'VERB': 'Verbe', 'X': 'Autre',
|
|
}
|
|
}
|
|
|
|
ENTITY_LABELS = {
|
|
'es': {
|
|
"Personas": "lightblue",
|
|
"Lugares": "lightcoral",
|
|
"Inventos": "lightgreen",
|
|
"Fechas": "lightyellow",
|
|
"Conceptos": "lightpink"
|
|
},
|
|
'en': {
|
|
"People": "lightblue",
|
|
"Places": "lightcoral",
|
|
"Inventions": "lightgreen",
|
|
"Dates": "lightyellow",
|
|
"Concepts": "lightpink"
|
|
},
|
|
'fr': {
|
|
"Personnes": "lightblue",
|
|
"Lieux": "lightcoral",
|
|
"Inventions": "lightgreen",
|
|
"Dates": "lightyellow",
|
|
"Concepts": "lightpink"
|
|
}
|
|
}
|
|
|
|
def fig_to_bytes(fig):
|
|
"""Convierte una figura de matplotlib a bytes."""
|
|
try:
|
|
buf = io.BytesIO()
|
|
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
|
buf.seek(0)
|
|
return buf.getvalue()
|
|
except Exception as e:
|
|
logger.error(f"Error en fig_to_bytes: {str(e)}")
|
|
return None
|
|
|
|
|
|
def perform_semantic_analysis(text, nlp, lang_code):
|
|
"""
|
|
Realiza el análisis semántico completo del texto.
|
|
"""
|
|
if not text or not nlp or not lang_code:
|
|
logger.error("Parámetros inválidos para el análisis semántico")
|
|
return {
|
|
'success': False,
|
|
'error': 'Parámetros inválidos'
|
|
}
|
|
|
|
try:
|
|
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
|
|
|
|
|
doc = nlp(text)
|
|
if not doc:
|
|
logger.error("Error al procesar el texto con spaCy")
|
|
return {
|
|
'success': False,
|
|
'error': 'Error al procesar el texto'
|
|
}
|
|
|
|
|
|
logger.info("Identificando conceptos clave...")
|
|
stopwords = get_custom_stopwords(lang_code)
|
|
key_concepts = identify_key_concepts(doc, stopwords=stopwords)
|
|
|
|
if not key_concepts:
|
|
logger.warning("No se identificaron conceptos clave")
|
|
return {
|
|
'success': False,
|
|
'error': 'No se pudieron identificar conceptos clave'
|
|
}
|
|
|
|
|
|
logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...")
|
|
concept_graph = create_concept_graph(doc, key_concepts)
|
|
|
|
if not concept_graph.nodes():
|
|
logger.warning("Se creó un grafo vacío")
|
|
return {
|
|
'success': False,
|
|
'error': 'No se pudo crear el grafo de conceptos'
|
|
}
|
|
|
|
|
|
logger.info("Visualizando grafo...")
|
|
plt.clf()
|
|
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
|
|
|
|
|
logger.info("Convirtiendo grafo a bytes...")
|
|
graph_bytes = fig_to_bytes(concept_graph_fig)
|
|
|
|
if not graph_bytes:
|
|
logger.error("Error al convertir grafo a bytes")
|
|
return {
|
|
'success': False,
|
|
'error': 'Error al generar visualización'
|
|
}
|
|
|
|
|
|
plt.close(concept_graph_fig)
|
|
plt.close('all')
|
|
|
|
result = {
|
|
'success': True,
|
|
'key_concepts': key_concepts,
|
|
'concept_graph': graph_bytes
|
|
}
|
|
|
|
logger.info("Análisis semántico completado exitosamente")
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
|
plt.close('all')
|
|
return {
|
|
'success': False,
|
|
'error': str(e)
|
|
}
|
|
finally:
|
|
plt.close('all')
|
|
|
|
|
|
|
|
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
|
"""
|
|
Identifica conceptos clave en el texto, excluyendo entidades nombradas.
|
|
Args:
|
|
doc: Documento procesado por spaCy
|
|
stopwords: Lista de stopwords
|
|
min_freq: Frecuencia mínima para considerar un concepto
|
|
min_length: Longitud mínima del concepto
|
|
Returns:
|
|
List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia)
|
|
"""
|
|
try:
|
|
word_freq = Counter()
|
|
|
|
|
|
entity_tokens = set()
|
|
for ent in doc.ents:
|
|
entity_tokens.update(token.i for token in ent)
|
|
|
|
|
|
for token in doc:
|
|
|
|
if (token.i not in entity_tokens and
|
|
token.lemma_.lower() not in stopwords and
|
|
len(token.lemma_) >= min_length and
|
|
token.is_alpha and
|
|
not token.is_punct and
|
|
not token.like_num and
|
|
not token.is_space and
|
|
not token.is_stop and
|
|
not token.pos_ == 'PROPN' and
|
|
not token.pos_ == 'SYM' and
|
|
not token.pos_ == 'NUM' and
|
|
not token.pos_ == 'X'):
|
|
|
|
|
|
word_freq[token.lemma_.lower()] += 1
|
|
|
|
|
|
concepts = [(word, freq) for word, freq in word_freq.items()
|
|
if freq >= min_freq]
|
|
concepts.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
logger.info(f"Identified {len(concepts)} key concepts after excluding entities")
|
|
return concepts[:10]
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
|
return []
|
|
|
|
|
|
|
|
def create_concept_graph(doc, key_concepts):
|
|
"""
|
|
Crea un grafo de relaciones entre conceptos, ignorando entidades.
|
|
Args:
|
|
doc: Documento procesado por spaCy
|
|
key_concepts: Lista de tuplas (concepto, frecuencia)
|
|
Returns:
|
|
nx.Graph: Grafo de conceptos
|
|
"""
|
|
try:
|
|
G = nx.Graph()
|
|
|
|
|
|
concept_words = {concept[0].lower() for concept in key_concepts}
|
|
|
|
|
|
entity_tokens = set()
|
|
for ent in doc.ents:
|
|
entity_tokens.update(token.i for token in ent)
|
|
|
|
|
|
for concept, freq in key_concepts:
|
|
G.add_node(concept.lower(), weight=freq)
|
|
|
|
|
|
for sent in doc.sents:
|
|
|
|
current_concepts = []
|
|
for token in sent:
|
|
if (token.i not in entity_tokens and
|
|
token.lemma_.lower() in concept_words):
|
|
current_concepts.append(token.lemma_.lower())
|
|
|
|
|
|
for i, concept1 in enumerate(current_concepts):
|
|
for concept2 in current_concepts[i+1:]:
|
|
if concept1 != concept2:
|
|
if G.has_edge(concept1, concept2):
|
|
G[concept1][concept2]['weight'] += 1
|
|
else:
|
|
G.add_edge(concept1, concept2, weight=1)
|
|
|
|
return G
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en create_concept_graph: {str(e)}")
|
|
return nx.Graph()
|
|
|
|
|
|
|
|
def visualize_concept_graph(G, lang_code):
|
|
"""
|
|
Visualiza el grafo de conceptos con layout consistente.
|
|
Args:
|
|
G: networkx.Graph - Grafo de conceptos
|
|
lang_code: str - Código del idioma
|
|
Returns:
|
|
matplotlib.figure.Figure - Figura del grafo
|
|
"""
|
|
try:
|
|
|
|
fig, ax = plt.subplots(figsize=(15, 10))
|
|
|
|
if not G.nodes():
|
|
logger.warning("Grafo vacío, retornando figura vacía")
|
|
return fig
|
|
|
|
|
|
DG = nx.DiGraph(G)
|
|
|
|
|
|
centrality = nx.degree_centrality(G)
|
|
|
|
|
|
seed = 42
|
|
|
|
|
|
pos = nx.spring_layout(
|
|
DG,
|
|
k=2,
|
|
iterations=50,
|
|
seed=seed
|
|
)
|
|
|
|
|
|
num_nodes = len(DG.nodes())
|
|
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
|
|
|
|
|
|
node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()]
|
|
edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()]
|
|
|
|
|
|
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
|
|
|
|
|
|
nodes = nx.draw_networkx_nodes(
|
|
DG,
|
|
pos,
|
|
node_size=node_weights,
|
|
node_color=node_colors,
|
|
alpha=0.7,
|
|
ax=ax
|
|
)
|
|
|
|
|
|
edges = nx.draw_networkx_edges(
|
|
DG,
|
|
pos,
|
|
width=edge_weights,
|
|
alpha=0.6,
|
|
edge_color='gray',
|
|
arrows=True,
|
|
arrowsize=20,
|
|
arrowstyle='->',
|
|
connectionstyle='arc3,rad=0.2',
|
|
ax=ax
|
|
)
|
|
|
|
|
|
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
|
|
|
|
|
labels = nx.draw_networkx_labels(
|
|
DG,
|
|
pos,
|
|
font_size=font_size,
|
|
font_weight='bold',
|
|
bbox=dict(
|
|
facecolor='white',
|
|
edgecolor='none',
|
|
alpha=0.7
|
|
),
|
|
ax=ax
|
|
)
|
|
|
|
|
|
sm = plt.cm.ScalarMappable(
|
|
cmap=plt.cm.viridis,
|
|
norm=plt.Normalize(vmin=0, vmax=1)
|
|
)
|
|
sm.set_array([])
|
|
plt.colorbar(sm, ax=ax, label='Centralidad del concepto')
|
|
|
|
plt.title("Red de conceptos relacionados", pad=20, fontsize=14)
|
|
ax.set_axis_off()
|
|
|
|
|
|
plt.tight_layout()
|
|
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
|
return plt.figure()
|
|
|
|
|
|
def create_entity_graph(entities):
|
|
G = nx.Graph()
|
|
for entity_type, entity_list in entities.items():
|
|
for entity in entity_list:
|
|
G.add_node(entity, type=entity_type)
|
|
for i, entity1 in enumerate(entity_list):
|
|
for entity2 in entity_list[i+1:]:
|
|
G.add_edge(entity1, entity2)
|
|
return G
|
|
|
|
|
|
|
|
def visualize_entity_graph(G, lang_code):
|
|
fig, ax = plt.subplots(figsize=(12, 8))
|
|
pos = nx.spring_layout(G)
|
|
for entity_type, color in ENTITY_LABELS[lang_code].items():
|
|
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
|
|
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
|
|
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
|
|
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
|
|
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
|
|
ax.axis('off')
|
|
plt.tight_layout()
|
|
return fig
|
|
|
|
|
|
|
|
def create_topic_graph(topics, doc):
|
|
G = nx.Graph()
|
|
for topic in topics:
|
|
G.add_node(topic, weight=doc.text.count(topic))
|
|
for i, topic1 in enumerate(topics):
|
|
for topic2 in topics[i+1:]:
|
|
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
|
|
if weight > 0:
|
|
G.add_edge(topic1, topic2, weight=weight)
|
|
return G
|
|
|
|
def visualize_topic_graph(G, lang_code):
|
|
fig, ax = plt.subplots(figsize=(12, 8))
|
|
pos = nx.spring_layout(G)
|
|
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
|
|
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
|
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
|
|
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
|
|
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
|
|
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
|
|
ax.axis('off')
|
|
plt.tight_layout()
|
|
return fig
|
|
|
|
|
|
def generate_summary(doc, lang_code):
|
|
sentences = list(doc.sents)
|
|
summary = sentences[:3]
|
|
return " ".join([sent.text for sent in summary])
|
|
|
|
def extract_entities(doc, lang_code):
|
|
entities = defaultdict(list)
|
|
for ent in doc.ents:
|
|
if ent.label_ in ENTITY_LABELS[lang_code]:
|
|
entities[ent.label_].append(ent.text)
|
|
return dict(entities)
|
|
|
|
def analyze_sentiment(doc, lang_code):
|
|
positive_words = sum(1 for token in doc if token.sentiment > 0)
|
|
negative_words = sum(1 for token in doc if token.sentiment < 0)
|
|
total_words = len(doc)
|
|
if positive_words > negative_words:
|
|
return "Positivo"
|
|
elif negative_words > positive_words:
|
|
return "Negativo"
|
|
else:
|
|
return "Neutral"
|
|
|
|
def extract_topics(doc, lang_code):
|
|
vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
|
|
tfidf_matrix = vectorizer.fit_transform([doc.text])
|
|
feature_names = vectorizer.get_feature_names_out()
|
|
return list(feature_names)
|
|
|
|
|
|
__all__ = [
|
|
'perform_semantic_analysis',
|
|
'identify_key_concepts',
|
|
'create_concept_graph',
|
|
'visualize_concept_graph',
|
|
'fig_to_bytes',
|
|
'ENTITY_LABELS',
|
|
'POS_COLORS',
|
|
'POS_TRANSLATIONS'
|
|
] |