|
|
|
|
|
|
|
import streamlit as st
|
|
import spacy
|
|
import networkx as nx
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import numpy as np
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
from .semantic_analysis import (
|
|
create_concept_graph,
|
|
visualize_concept_graph,
|
|
identify_key_concepts
|
|
)
|
|
|
|
from .stopwords import (
|
|
get_custom_stopwords,
|
|
process_text,
|
|
get_stopwords_for_spacy
|
|
)
|
|
|
|
|
|
|
|
POS_COLORS = {
|
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
|
}
|
|
|
|
POS_TRANSLATIONS = {
|
|
'es': {
|
|
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
|
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
|
|
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
|
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
|
|
'VERB': 'Verbo', 'X': 'Otro',
|
|
},
|
|
'en': {
|
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
|
'VERB': 'Verb', 'X': 'Other',
|
|
},
|
|
'fr': {
|
|
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
|
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
|
'VERB': 'Verbe', 'X': 'Autre',
|
|
}
|
|
}
|
|
|
|
ENTITY_LABELS = {
|
|
'es': {
|
|
"Personas": "lightblue",
|
|
"Lugares": "lightcoral",
|
|
"Inventos": "lightgreen",
|
|
"Fechas": "lightyellow",
|
|
"Conceptos": "lightpink"
|
|
},
|
|
'en': {
|
|
"People": "lightblue",
|
|
"Places": "lightcoral",
|
|
"Inventions": "lightgreen",
|
|
"Dates": "lightyellow",
|
|
"Concepts": "lightpink"
|
|
},
|
|
'fr': {
|
|
"Personnes": "lightblue",
|
|
"Lieux": "lightcoral",
|
|
"Inventions": "lightgreen",
|
|
"Dates": "lightyellow",
|
|
"Concepts": "lightpink"
|
|
}
|
|
}
|
|
|
|
|
|
|
|
def compare_semantic_analysis(text1, text2, nlp, lang):
|
|
"""
|
|
Realiza el análisis semántico comparativo entre dos textos
|
|
"""
|
|
try:
|
|
logger.info(f"Iniciando análisis comparativo para idioma: {lang}")
|
|
|
|
|
|
stopwords = get_custom_stopwords(lang)
|
|
logger.info(f"Obtenidas {len(stopwords)} stopwords para el idioma {lang}")
|
|
|
|
|
|
doc1 = nlp(text1)
|
|
doc2 = nlp(text2)
|
|
|
|
|
|
logger.info("Identificando conceptos clave del primer texto...")
|
|
key_concepts1 = identify_key_concepts(doc1, stopwords=stopwords, min_freq=2, min_length=3)
|
|
|
|
logger.info("Identificando conceptos clave del segundo texto...")
|
|
key_concepts2 = identify_key_concepts(doc2, stopwords=stopwords, min_freq=2, min_length=3)
|
|
|
|
if not key_concepts1 or not key_concepts2:
|
|
raise ValueError("No se pudieron identificar conceptos clave en uno o ambos textos")
|
|
|
|
|
|
logger.info("Creando grafos de conceptos...")
|
|
G1 = create_concept_graph(doc1, key_concepts1)
|
|
G2 = create_concept_graph(doc2, key_concepts2)
|
|
|
|
|
|
logger.info("Visualizando grafos...")
|
|
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
fig1 = visualize_concept_graph(G1, lang)
|
|
plt.title("Análisis del primer texto", pad=20)
|
|
plt.tight_layout()
|
|
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
fig2 = visualize_concept_graph(G2, lang)
|
|
plt.title("Análisis del segundo texto", pad=20)
|
|
plt.tight_layout()
|
|
|
|
logger.info("Análisis comparativo completado exitosamente")
|
|
return fig1, fig2, key_concepts1, key_concepts2
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en compare_semantic_analysis: {str(e)}")
|
|
plt.close('all')
|
|
raise
|
|
finally:
|
|
plt.close('all')
|
|
|
|
|
|
|
|
def create_concept_table(key_concepts):
|
|
"""
|
|
Crea una tabla de conceptos clave con sus frecuencias
|
|
Args:
|
|
key_concepts: Lista de tuplas (concepto, frecuencia)
|
|
Returns:
|
|
pandas.DataFrame: Tabla formateada de conceptos
|
|
"""
|
|
try:
|
|
if not key_concepts:
|
|
logger.warning("Lista de conceptos vacía")
|
|
return pd.DataFrame(columns=['Concepto', 'Frecuencia'])
|
|
|
|
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
|
|
df['Frecuencia'] = df['Frecuencia'].round(2)
|
|
return df
|
|
except Exception as e:
|
|
logger.error(f"Error en create_concept_table: {str(e)}")
|
|
return pd.DataFrame(columns=['Concepto', 'Frecuencia'])
|
|
|
|
|
|
|
|
def perform_discourse_analysis(text1, text2, nlp, lang):
|
|
"""
|
|
Realiza el análisis completo del discurso
|
|
"""
|
|
try:
|
|
logger.info("Iniciando análisis del discurso...")
|
|
|
|
|
|
if not text1 or not text2:
|
|
raise ValueError("Los textos de entrada no pueden estar vacíos")
|
|
|
|
if not nlp:
|
|
raise ValueError("Modelo de lenguaje no inicializado")
|
|
|
|
|
|
try:
|
|
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis(
|
|
text1, text2, nlp, lang
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error en el análisis comparativo: {str(e)}")
|
|
raise
|
|
|
|
|
|
try:
|
|
table1 = create_concept_table(key_concepts1)
|
|
table2 = create_concept_table(key_concepts2)
|
|
except Exception as e:
|
|
logger.error(f"Error creando tablas de conceptos: {str(e)}")
|
|
raise
|
|
|
|
result = {
|
|
'graph1': fig1,
|
|
'graph2': fig2,
|
|
'key_concepts1': key_concepts1,
|
|
'key_concepts2': key_concepts2,
|
|
'table1': table1,
|
|
'table2': table2,
|
|
'success': True
|
|
}
|
|
|
|
logger.info("Análisis del discurso completado exitosamente")
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en perform_discourse_analysis: {str(e)}")
|
|
return {
|
|
'success': False,
|
|
'error': str(e)
|
|
}
|
|
finally:
|
|
plt.close('all')
|
|
|
|
|
|
def create_concept_table(key_concepts):
|
|
"""
|
|
Crea una tabla de conceptos clave con sus frecuencias
|
|
Args:
|
|
key_concepts: Lista de tuplas (concepto, frecuencia)
|
|
Returns:
|
|
pandas.DataFrame: Tabla formateada de conceptos
|
|
"""
|
|
try:
|
|
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
|
|
df['Frecuencia'] = df['Frecuencia'].round(2)
|
|
return df
|
|
except Exception as e:
|
|
logger.error(f"Error en create_concept_table: {str(e)}")
|
|
raise
|
|
|
|
|
|
def perform_discourse_analysis(text1, text2, nlp, lang):
|
|
"""
|
|
Realiza el análisis completo del discurso
|
|
Args:
|
|
text1: Primer texto a analizar
|
|
text2: Segundo texto a analizar
|
|
nlp: Modelo de spaCy cargado
|
|
lang: Código de idioma
|
|
Returns:
|
|
dict: Resultados del análisis
|
|
"""
|
|
try:
|
|
|
|
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis(
|
|
text1, text2, nlp, lang
|
|
)
|
|
|
|
|
|
table1 = create_concept_table(key_concepts1)
|
|
table2 = create_concept_table(key_concepts2)
|
|
|
|
return {
|
|
'graph1': fig1,
|
|
'graph2': fig2,
|
|
'key_concepts1': key_concepts1,
|
|
'key_concepts2': key_concepts2,
|
|
'table1': table1,
|
|
'table2': table2,
|
|
'success': True
|
|
}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en perform_discourse_analysis: {str(e)}")
|
|
return {
|
|
'success': False,
|
|
'error': str(e)
|
|
} |