|
|
|
|
|
import streamlit as st
|
|
from streamlit_float import *
|
|
from streamlit_antd_components import *
|
|
import pandas as pd
|
|
import logging
|
|
import io
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
from .discourse_process import perform_discourse_analysis
|
|
from .discourse_interface import display_discourse_results
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from ..database.discourse_mongo_db import store_student_discourse_result
|
|
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
|
|
|
|
|
|
|
def fig_to_bytes(fig):
|
|
"""Convierte una figura de matplotlib a bytes."""
|
|
try:
|
|
buf = io.BytesIO()
|
|
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
|
buf.seek(0)
|
|
return buf.getvalue()
|
|
except Exception as e:
|
|
logger.error(f"Error en fig_to_bytes: {str(e)}")
|
|
return None
|
|
|
|
|
|
def display_discourse_live_interface(lang_code, nlp_models, discourse_t):
|
|
"""
|
|
Interfaz para el análisis del discurso en vivo con layout mejorado
|
|
"""
|
|
try:
|
|
if 'discourse_live_state' not in st.session_state:
|
|
st.session_state.discourse_live_state = {
|
|
'analysis_count': 0,
|
|
'current_text1': '',
|
|
'current_text2': '',
|
|
'last_result': None,
|
|
'text_changed': False
|
|
}
|
|
|
|
|
|
st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos'))
|
|
|
|
|
|
text_col1, text_col2 = st.columns(2)
|
|
|
|
|
|
with text_col1:
|
|
st.markdown("**Texto 1 (Patrón)**")
|
|
text_input1 = st.text_area(
|
|
"Texto 1",
|
|
height=200,
|
|
key="discourse_live_text1",
|
|
value=st.session_state.discourse_live_state.get('current_text1', ''),
|
|
label_visibility="collapsed"
|
|
)
|
|
st.session_state.discourse_live_state['current_text1'] = text_input1
|
|
|
|
|
|
with text_col2:
|
|
st.markdown("**Texto 2 (Comparación)**")
|
|
text_input2 = st.text_area(
|
|
"Texto 2",
|
|
height=200,
|
|
key="discourse_live_text2",
|
|
value=st.session_state.discourse_live_state.get('current_text2', ''),
|
|
label_visibility="collapsed"
|
|
)
|
|
st.session_state.discourse_live_state['current_text2'] = text_input2
|
|
|
|
|
|
col1, col2, col3 = st.columns([1,2,1])
|
|
with col1:
|
|
analyze_button = st.button(
|
|
discourse_t.get('analyze_button', 'Analizar'),
|
|
key="discourse_live_analyze",
|
|
type="primary",
|
|
icon="🔍",
|
|
disabled=not (text_input1 and text_input2),
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
if analyze_button and text_input1 and text_input2:
|
|
try:
|
|
with st.spinner(discourse_t.get('processing', 'Procesando...')):
|
|
result = perform_discourse_analysis(
|
|
text_input1,
|
|
text_input2,
|
|
nlp_models[lang_code],
|
|
lang_code
|
|
)
|
|
|
|
if result['success']:
|
|
|
|
for graph_key in ['graph1', 'graph2']:
|
|
if graph_key in result and result[graph_key] is not None:
|
|
bytes_key = f'{graph_key}_bytes'
|
|
graph_bytes = fig_to_bytes(result[graph_key])
|
|
if graph_bytes:
|
|
result[bytes_key] = graph_bytes
|
|
plt.close(result[graph_key])
|
|
|
|
st.session_state.discourse_live_state['last_result'] = result
|
|
st.session_state.discourse_live_state['analysis_count'] += 1
|
|
|
|
store_student_discourse_result(
|
|
st.session_state.username,
|
|
text_input1,
|
|
text_input2,
|
|
result
|
|
)
|
|
|
|
|
|
st.markdown("---")
|
|
st.subheader(discourse_t.get('results_title', 'Resultados del Análisis'))
|
|
display_discourse_results(result, lang_code, discourse_t)
|
|
|
|
else:
|
|
st.error(result.get('message', 'Error en el análisis'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis: {str(e)}")
|
|
st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}'))
|
|
|
|
|
|
elif 'last_result' in st.session_state.discourse_live_state and \
|
|
st.session_state.discourse_live_state['last_result'] is not None:
|
|
|
|
st.markdown("---")
|
|
st.subheader(discourse_t.get('previous_results', 'Resultados del Análisis Anterior'))
|
|
display_discourse_results(
|
|
st.session_state.discourse_live_state['last_result'],
|
|
lang_code,
|
|
discourse_t
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}")
|
|
st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
|
|
|
|
|
|
|
|