|
|
|
import streamlit as st
|
|
from streamlit_float import *
|
|
from streamlit_antd_components import *
|
|
from streamlit.components.v1 import html
|
|
import spacy_streamlit
|
|
import io
|
|
from io import BytesIO
|
|
import base64
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import re
|
|
import logging
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
from .semantic_process import (
|
|
process_semantic_input,
|
|
format_semantic_results
|
|
)
|
|
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from ..database.semantic_mongo_db import store_student_semantic_result
|
|
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
|
|
|
|
|
|
|
|
|
|
|
def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
|
"""
|
|
Interfaz para el análisis semántico
|
|
Args:
|
|
lang_code: Código del idioma actual
|
|
nlp_models: Modelos de spaCy cargados
|
|
semantic_t: Diccionario de traducciones semánticas
|
|
"""
|
|
try:
|
|
|
|
if 'semantic_state' not in st.session_state:
|
|
st.session_state.semantic_state = {
|
|
'analysis_count': 0,
|
|
'last_analysis': None,
|
|
'current_file': None
|
|
}
|
|
|
|
|
|
st.info(semantic_t.get('initial_instruction',
|
|
'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)'))
|
|
|
|
uploaded_file = st.file_uploader(
|
|
semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'),
|
|
type=['txt'],
|
|
key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}"
|
|
)
|
|
|
|
|
|
col1, col2 = st.columns([1,4])
|
|
|
|
|
|
with col1:
|
|
analyze_button = st.button(
|
|
semantic_t.get('semantic_analyze_button', 'Analyze'),
|
|
key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}",
|
|
type="primary",
|
|
icon="🔍",
|
|
disabled=uploaded_file is None,
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
if analyze_button and uploaded_file is not None:
|
|
try:
|
|
with st.spinner(semantic_t.get('processing', 'Processing...')):
|
|
|
|
text_content = uploaded_file.getvalue().decode('utf-8')
|
|
|
|
|
|
analysis_result = process_semantic_input(
|
|
text_content,
|
|
lang_code,
|
|
nlp_models,
|
|
semantic_t
|
|
)
|
|
|
|
if analysis_result['success']:
|
|
|
|
st.session_state.semantic_result = analysis_result
|
|
st.session_state.semantic_state['analysis_count'] += 1
|
|
st.session_state.semantic_state['current_file'] = uploaded_file.name
|
|
|
|
|
|
if store_student_semantic_result(
|
|
st.session_state.username,
|
|
text_content,
|
|
analysis_result['analysis']
|
|
):
|
|
st.success(
|
|
semantic_t.get('analysis_complete',
|
|
'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.')
|
|
)
|
|
|
|
|
|
display_semantic_results(
|
|
st.session_state.semantic_result,
|
|
lang_code,
|
|
semantic_t
|
|
)
|
|
else:
|
|
st.error(semantic_t.get('error_message', 'Error saving analysis'))
|
|
else:
|
|
st.error(analysis_result['message'])
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis semántico: {str(e)}")
|
|
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
|
|
|
|
|
|
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
|
|
|
|
st.info(
|
|
semantic_t.get('current_analysis_message',
|
|
f'Mostrando análisis del archivo: {st.session_state.semantic_state["current_file"]}. '
|
|
'Para realizar un nuevo análisis, cargue otro archivo.')
|
|
)
|
|
|
|
display_semantic_results(
|
|
st.session_state.semantic_result,
|
|
lang_code,
|
|
semantic_t
|
|
)
|
|
else:
|
|
st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error general en interfaz semántica: {str(e)}")
|
|
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
|
|
|
|
|
def display_semantic_results(semantic_result, lang_code, semantic_t):
|
|
"""
|
|
Muestra los resultados del análisis semántico de conceptos clave.
|
|
"""
|
|
if semantic_result is None or not semantic_result['success']:
|
|
st.warning(semantic_t.get('no_results', 'No results available'))
|
|
return
|
|
|
|
analysis = semantic_result['analysis']
|
|
|
|
|
|
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
|
|
if 'key_concepts' in analysis and analysis['key_concepts']:
|
|
|
|
df = pd.DataFrame(
|
|
analysis['key_concepts'],
|
|
columns=[
|
|
semantic_t.get('concept', 'Concept'),
|
|
semantic_t.get('frequency', 'Frequency')
|
|
]
|
|
)
|
|
|
|
|
|
st.write(
|
|
"""
|
|
<style>
|
|
.concept-table {
|
|
display: flex;
|
|
flex-wrap: wrap;
|
|
gap: 10px;
|
|
margin-bottom: 20px;
|
|
}
|
|
.concept-item {
|
|
background-color: #f0f2f6;
|
|
border-radius: 5px;
|
|
padding: 8px 12px;
|
|
display: flex;
|
|
align-items: center;
|
|
gap: 8px;
|
|
}
|
|
.concept-name {
|
|
font-weight: bold;
|
|
}
|
|
.concept-freq {
|
|
color: #666;
|
|
font-size: 0.9em;
|
|
}
|
|
</style>
|
|
<div class="concept-table">
|
|
""" +
|
|
''.join([
|
|
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
|
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
|
for concept, freq in df.values
|
|
]) +
|
|
"</div>",
|
|
unsafe_allow_html=True
|
|
)
|
|
else:
|
|
st.info(semantic_t.get('no_concepts', 'No key concepts found'))
|
|
|
|
|
|
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
|
|
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
|
try:
|
|
|
|
st.markdown(
|
|
"""
|
|
<style>
|
|
.graph-container {
|
|
background-color: white;
|
|
border-radius: 10px;
|
|
padding: 20px;
|
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
|
margin: 10px 0;
|
|
}
|
|
.button-container {
|
|
display: flex;
|
|
gap: 10px;
|
|
margin: 10px 0;
|
|
}
|
|
</style>
|
|
""",
|
|
unsafe_allow_html=True
|
|
)
|
|
|
|
with st.container():
|
|
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
|
|
|
|
|
graph_bytes = analysis['concept_graph']
|
|
graph_base64 = base64.b64encode(graph_bytes).decode()
|
|
st.markdown(
|
|
f'<img src="data:image/png;base64,{graph_base64}" alt="Concept Graph" style="width:100%;"/>',
|
|
unsafe_allow_html=True
|
|
)
|
|
|
|
|
|
st.caption(semantic_t.get(
|
|
'graph_description',
|
|
'Visualización de relaciones entre conceptos clave identificados en el texto.'
|
|
))
|
|
|
|
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
col1, col2 = st.columns([1,4])
|
|
with col1:
|
|
st.download_button(
|
|
label="📥 " + semantic_t.get('download_graph', "Download"),
|
|
data=graph_bytes,
|
|
file_name="semantic_graph.png",
|
|
mime="image/png",
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
|
|
st.markdown("""
|
|
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
|
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
|
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
|
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
|
""")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error displaying graph: {str(e)}")
|
|
st.error(semantic_t.get('graph_error', 'Error displaying the graph'))
|
|
else:
|
|
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
|
|
|
|
|
|
|
'''
|
|
# Botón de exportación al final
|
|
if 'semantic_analysis_counter' in st.session_state:
|
|
col1, col2, col3 = st.columns([2,1,2])
|
|
with col2:
|
|
if st.button(
|
|
semantic_t.get('export_button', 'Export Analysis'),
|
|
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
|
|
use_container_width=True
|
|
):
|
|
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
|
|
st.download_button(
|
|
label=semantic_t.get('download_pdf', 'Download PDF'),
|
|
data=pdf_buffer,
|
|
file_name="semantic_analysis.pdf",
|
|
mime="application/pdf",
|
|
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
|
|
)
|
|
''' |