|
|
|
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import plotly.graph_objects as go
|
|
import logging
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from .discourse_process import perform_discourse_analysis
|
|
from ..database.chat_mongo_db import store_chat_history
|
|
from ..database.discourse_mongo_db import store_student_discourse_result
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
"""
|
|
Interfaz para el análisis del discurso
|
|
Args:
|
|
lang_code: Código del idioma actual
|
|
nlp_models: Modelos de spaCy cargados
|
|
discourse_t: Diccionario de traducciones
|
|
"""
|
|
try:
|
|
|
|
if 'discourse_state' not in st.session_state:
|
|
st.session_state.discourse_state = {
|
|
'analysis_count': 0,
|
|
'last_analysis': None,
|
|
'current_files': None
|
|
}
|
|
|
|
|
|
st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso'))
|
|
st.info(discourse_t.get('initial_instruction',
|
|
'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.'))
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**"))
|
|
uploaded_file1 = st.file_uploader(
|
|
discourse_t.get('file_uploader1', "Cargar archivo 1"),
|
|
type=['txt'],
|
|
key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}"
|
|
)
|
|
|
|
with col2:
|
|
st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**"))
|
|
uploaded_file2 = st.file_uploader(
|
|
discourse_t.get('file_uploader2', "Cargar archivo 2"),
|
|
type=['txt'],
|
|
key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}"
|
|
)
|
|
|
|
|
|
col1, col2, col3 = st.columns([1,2,1])
|
|
with col1:
|
|
analyze_button = st.button(
|
|
discourse_t.get('discourse_analyze_button', 'Analizar Discurso'),
|
|
key=generate_unique_key("discourse", "analyze_button"),
|
|
type="primary",
|
|
icon="🔍",
|
|
disabled=not (uploaded_file1 and uploaded_file2),
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
if analyze_button and uploaded_file1 and uploaded_file2:
|
|
try:
|
|
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')):
|
|
|
|
text1 = uploaded_file1.getvalue().decode('utf-8')
|
|
text2 = uploaded_file2.getvalue().decode('utf-8')
|
|
|
|
|
|
result = perform_discourse_analysis(
|
|
text1,
|
|
text2,
|
|
nlp_models[lang_code],
|
|
lang_code
|
|
)
|
|
|
|
if result['success']:
|
|
|
|
st.session_state.discourse_result = result
|
|
st.session_state.discourse_state['analysis_count'] += 1
|
|
st.session_state.discourse_state['current_files'] = (
|
|
uploaded_file1.name,
|
|
uploaded_file2.name
|
|
)
|
|
|
|
|
|
if store_student_discourse_result(
|
|
st.session_state.username,
|
|
text1,
|
|
text2,
|
|
result
|
|
):
|
|
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente'))
|
|
|
|
|
|
display_discourse_results(result, lang_code, discourse_t)
|
|
else:
|
|
st.error(discourse_t.get('error_message', 'Error al guardar el análisis'))
|
|
else:
|
|
st.error(discourse_t.get('analysis_error', 'Error en el análisis'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis del discurso: {str(e)}")
|
|
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}'))
|
|
|
|
|
|
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
|
|
if st.session_state.discourse_state.get('current_files'):
|
|
st.info(
|
|
discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}')
|
|
.format(*st.session_state.discourse_state['current_files'])
|
|
)
|
|
display_discourse_results(
|
|
st.session_state.discourse_result,
|
|
lang_code,
|
|
discourse_t
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
|
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
|
|
|
|
|
|
|
|
|
|
|
def display_discourse_results(result, lang_code, discourse_t):
|
|
"""
|
|
Muestra los resultados del análisis del discurso
|
|
"""
|
|
if not result.get('success'):
|
|
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
|
return
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.concepts-container {
|
|
display: flex;
|
|
flex-wrap: nowrap;
|
|
gap: 8px;
|
|
padding: 12px;
|
|
background-color: #f8f9fa;
|
|
border-radius: 8px;
|
|
overflow-x: auto;
|
|
margin-bottom: 15px;
|
|
white-space: nowrap;
|
|
}
|
|
.concept-item {
|
|
background-color: white;
|
|
border-radius: 4px;
|
|
padding: 6px 10px;
|
|
display: inline-flex;
|
|
align-items: center;
|
|
gap: 4px;
|
|
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
|
flex-shrink: 0;
|
|
}
|
|
.concept-name {
|
|
font-weight: 500;
|
|
color: #1f2937;
|
|
font-size: 0.85em;
|
|
}
|
|
.concept-freq {
|
|
color: #6b7280;
|
|
font-size: 0.75em;
|
|
}
|
|
.graph-container {
|
|
background-color: white;
|
|
padding: 15px;
|
|
border-radius: 8px;
|
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
|
margin-top: 10px;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
|
|
with col1:
|
|
st.subheader(discourse_t.get('doc1_title', 'Documento 1'))
|
|
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
|
if 'key_concepts1' in result:
|
|
concepts_html = f"""
|
|
<div class="concepts-container">
|
|
{''.join([
|
|
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
|
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
|
for concept, freq in result['key_concepts1']
|
|
])}
|
|
</div>
|
|
"""
|
|
st.markdown(concepts_html, unsafe_allow_html=True)
|
|
|
|
if 'graph1' in result:
|
|
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
|
st.pyplot(result['graph1'])
|
|
|
|
|
|
button_col1, spacer_col1 = st.columns([1,4])
|
|
with button_col1:
|
|
if 'graph1_bytes' in result:
|
|
st.download_button(
|
|
label="📥 " + discourse_t.get('download_graph', "Download"),
|
|
data=result['graph1_bytes'],
|
|
file_name="discourse_graph1.png",
|
|
mime="image/png",
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
st.markdown("**📊 Interpretación del grafo:**")
|
|
st.markdown("""
|
|
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
|
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
|
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
|
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
|
""")
|
|
|
|
st.markdown('</div>', unsafe_allow_html=True)
|
|
else:
|
|
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
|
else:
|
|
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
|
|
|
|
|
with col2:
|
|
st.subheader(discourse_t.get('doc2_title', 'Documento 2'))
|
|
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
|
if 'key_concepts2' in result:
|
|
concepts_html = f"""
|
|
<div class="concepts-container">
|
|
{''.join([
|
|
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
|
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
|
for concept, freq in result['key_concepts2']
|
|
])}
|
|
</div>
|
|
"""
|
|
st.markdown(concepts_html, unsafe_allow_html=True)
|
|
|
|
if 'graph2' in result:
|
|
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
|
st.pyplot(result['graph2'])
|
|
|
|
|
|
button_col2, spacer_col2 = st.columns([1,4])
|
|
with button_col2:
|
|
if 'graph2_bytes' in result:
|
|
st.download_button(
|
|
label="📥 " + discourse_t.get('download_graph', "Download"),
|
|
data=result['graph2_bytes'],
|
|
file_name="discourse_graph2.png",
|
|
mime="image/png",
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
st.markdown("**📊 Interpretación del grafo:**")
|
|
st.markdown("""
|
|
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
|
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
|
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
|
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
|
""")
|
|
|
|
st.markdown('</div>', unsafe_allow_html=True)
|
|
else:
|
|
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
|
else:
|
|
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
|
|
|
|
|
st.info(discourse_t.get('comparison_note',
|
|
'La funcionalidad de comparación detallada estará disponible en una próxima actualización.')) |