Update modules/studentact/claude_recommendations.py
Browse files
modules/studentact/claude_recommendations.py
CHANGED
@@ -1,266 +1,303 @@
|
|
1 |
-
# modules/studentact/claude_recommendations.py
|
2 |
-
import os
|
3 |
-
import anthropic
|
4 |
-
import streamlit as st
|
5 |
-
import logging
|
6 |
-
import time
|
7 |
-
import json
|
8 |
-
from datetime import datetime, timezone
|
9 |
-
|
10 |
-
# Local imports
|
11 |
-
from ..utils.widget_utils import generate_unique_key
|
12 |
-
from ..database.current_situation_mongo_db import store_current_situation_result
|
13 |
-
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
# Define text types
|
17 |
-
TEXT_TYPES = {
|
18 |
-
'es': {
|
19 |
-
'academic_article': 'artículo académico',
|
20 |
-
'university_work': 'trabajo universitario',
|
21 |
-
'general_communication': 'comunicación general'
|
22 |
-
},
|
23 |
-
'en': {
|
24 |
-
'academic_article': 'academic article',
|
25 |
-
'university_work': 'university work',
|
26 |
-
'general_communication': 'general communication'
|
27 |
-
},
|
28 |
-
'
|
29 |
-
'academic_article': '
|
30 |
-
'university_work': '
|
31 |
-
'general_communication': '
|
32 |
-
}
|
33 |
-
}
|
34 |
-
|
35 |
-
# Cache for recommendations to avoid redundant API calls
|
36 |
-
recommendation_cache = {}
|
37 |
-
|
38 |
-
def get_recommendation_cache_key(text, metrics, text_type, lang_code):
|
39 |
-
"""
|
40 |
-
Generate a cache key for recommendations.
|
41 |
-
"""
|
42 |
-
# Create a simple hash based on text content and metrics
|
43 |
-
text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
|
44 |
-
metrics_hash = hash(json.dumps(metrics, sort_keys=True))
|
45 |
-
return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}"
|
46 |
-
|
47 |
-
def format_metrics_for_claude(metrics, lang_code, text_type):
|
48 |
-
"""
|
49 |
-
Format metrics in a way that's readable for Claude
|
50 |
-
"""
|
51 |
-
formatted_metrics = {}
|
52 |
-
for key, value in metrics.items():
|
53 |
-
if isinstance(value, (int, float)):
|
54 |
-
formatted_metrics[key] = round(value, 2)
|
55 |
-
else:
|
56 |
-
formatted_metrics[key] = value
|
57 |
-
|
58 |
-
# Add context about what type of text this is
|
59 |
-
text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type)
|
60 |
-
formatted_metrics['text_type'] = text_type_label
|
61 |
-
|
62 |
-
return formatted_metrics
|
63 |
-
|
64 |
-
def generate_claude_recommendations(text, metrics, text_type, lang_code):
|
65 |
-
"""
|
66 |
-
Generate personalized recommendations using Claude API.
|
67 |
-
"""
|
68 |
-
try:
|
69 |
-
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
70 |
-
if not api_key:
|
71 |
-
logger.error("Claude API key not found in environment variables")
|
72 |
-
return get_fallback_recommendations(lang_code)
|
73 |
-
|
74 |
-
# Check cache first
|
75 |
-
cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code)
|
76 |
-
if cache_key in recommendation_cache:
|
77 |
-
logger.info("Using cached recommendations")
|
78 |
-
return recommendation_cache[cache_key]
|
79 |
-
|
80 |
-
# Format metrics for Claude
|
81 |
-
formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type)
|
82 |
-
|
83 |
-
# Determine language for prompt
|
84 |
-
if lang_code == 'es':
|
85 |
-
system_prompt = """Eres un asistente especializado en análisis de textos académicos y comunicación escrita.
|
86 |
-
Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas.
|
87 |
-
Usa un tono constructivo y específico. Sé claro y directo con tus sugerencias.
|
88 |
-
"""
|
89 |
-
user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}'
|
90 |
-
y proporciona recomendaciones personalizadas para mejorarlo.
|
91 |
-
|
92 |
-
MÉTRICAS DE ANÁLISIS:
|
93 |
-
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
94 |
-
|
95 |
-
TEXTO A ANALIZAR:
|
96 |
-
{text[:2000]} # Limitamos el texto para evitar exceder tokens
|
97 |
-
|
98 |
-
Proporciona tu análisis con el siguiente formato:
|
99 |
-
1. Un resumen breve (2-3 frases) del análisis general
|
100 |
-
2. 3-4 recomendaciones específicas y accionables (cada una de 1-2 frases)
|
101 |
-
3. Un ejemplo concreto de mejora tomado del propio texto del usuario
|
102 |
-
4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso)
|
103 |
-
|
104 |
-
Tu respuesta debe ser concisa y no exceder los 300 palabras."""
|
105 |
-
else:
|
106 |
-
# Default to English
|
107 |
-
system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
|
108 |
-
Your task is to analyze the user's text and provide personalized recommendations.
|
109 |
-
Use a constructive and specific tone. Be clear and direct with your suggestions.
|
110 |
-
"""
|
111 |
-
user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}'
|
112 |
-
and provide personalized recommendations to improve it.
|
113 |
-
|
114 |
-
ANALYSIS METRICS:
|
115 |
-
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
116 |
-
|
117 |
-
TEXT TO ANALYZE:
|
118 |
-
{text[:2000]} # Limiting text to avoid exceeding tokens
|
119 |
-
|
120 |
-
Provide your analysis with the following format:
|
121 |
-
1. A brief summary (2-3 sentences) of the general analysis
|
122 |
-
2. 3-4 specific and actionable recommendations (each 1-2 sentences)
|
123 |
-
3. A concrete example of improvement taken from the user's own text
|
124 |
-
4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis)
|
125 |
-
|
126 |
-
Your response should be concise and not exceed 300 words."""
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
]
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.'))
|
|
|
1 |
+
# modules/studentact/claude_recommendations.py
|
2 |
+
import os
|
3 |
+
import anthropic
|
4 |
+
import streamlit as st
|
5 |
+
import logging
|
6 |
+
import time
|
7 |
+
import json
|
8 |
+
from datetime import datetime, timezone
|
9 |
+
|
10 |
+
# Local imports
|
11 |
+
from ..utils.widget_utils import generate_unique_key
|
12 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Define text types
|
17 |
+
TEXT_TYPES = {
|
18 |
+
'es': {
|
19 |
+
'academic_article': 'artículo académico',
|
20 |
+
'university_work': 'trabajo universitario',
|
21 |
+
'general_communication': 'comunicación general'
|
22 |
+
},
|
23 |
+
'en': {
|
24 |
+
'academic_article': 'academic article',
|
25 |
+
'university_work': 'university work',
|
26 |
+
'general_communication': 'general communication'
|
27 |
+
},
|
28 |
+
'uk': {
|
29 |
+
'academic_article': 'академічна стаття',
|
30 |
+
'university_work': 'університетська робота',
|
31 |
+
'general_communication': 'загальна комунікація'
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
# Cache for recommendations to avoid redundant API calls
|
36 |
+
recommendation_cache = {}
|
37 |
+
|
38 |
+
def get_recommendation_cache_key(text, metrics, text_type, lang_code):
|
39 |
+
"""
|
40 |
+
Generate a cache key for recommendations.
|
41 |
+
"""
|
42 |
+
# Create a simple hash based on text content and metrics
|
43 |
+
text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
|
44 |
+
metrics_hash = hash(json.dumps(metrics, sort_keys=True))
|
45 |
+
return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}"
|
46 |
+
|
47 |
+
def format_metrics_for_claude(metrics, lang_code, text_type):
|
48 |
+
"""
|
49 |
+
Format metrics in a way that's readable for Claude
|
50 |
+
"""
|
51 |
+
formatted_metrics = {}
|
52 |
+
for key, value in metrics.items():
|
53 |
+
if isinstance(value, (int, float)):
|
54 |
+
formatted_metrics[key] = round(value, 2)
|
55 |
+
else:
|
56 |
+
formatted_metrics[key] = value
|
57 |
+
|
58 |
+
# Add context about what type of text this is
|
59 |
+
text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type)
|
60 |
+
formatted_metrics['text_type'] = text_type_label
|
61 |
+
|
62 |
+
return formatted_metrics
|
63 |
+
|
64 |
+
def generate_claude_recommendations(text, metrics, text_type, lang_code):
|
65 |
+
"""
|
66 |
+
Generate personalized recommendations using Claude API.
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
70 |
+
if not api_key:
|
71 |
+
logger.error("Claude API key not found in environment variables")
|
72 |
+
return get_fallback_recommendations(lang_code)
|
73 |
+
|
74 |
+
# Check cache first
|
75 |
+
cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code)
|
76 |
+
if cache_key in recommendation_cache:
|
77 |
+
logger.info("Using cached recommendations")
|
78 |
+
return recommendation_cache[cache_key]
|
79 |
+
|
80 |
+
# Format metrics for Claude
|
81 |
+
formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type)
|
82 |
+
|
83 |
+
# Determine language for prompt
|
84 |
+
if lang_code == 'es':
|
85 |
+
system_prompt = """Eres un asistente especializado en análisis de textos académicos y comunicación escrita.
|
86 |
+
Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas.
|
87 |
+
Usa un tono constructivo y específico. Sé claro y directo con tus sugerencias.
|
88 |
+
"""
|
89 |
+
user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}'
|
90 |
+
y proporciona recomendaciones personalizadas para mejorarlo.
|
91 |
+
|
92 |
+
MÉTRICAS DE ANÁLISIS:
|
93 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
94 |
+
|
95 |
+
TEXTO A ANALIZAR:
|
96 |
+
{text[:2000]} # Limitamos el texto para evitar exceder tokens
|
97 |
+
|
98 |
+
Proporciona tu análisis con el siguiente formato:
|
99 |
+
1. Un resumen breve (2-3 frases) del análisis general
|
100 |
+
2. 3-4 recomendaciones específicas y accionables (cada una de 1-2 frases)
|
101 |
+
3. Un ejemplo concreto de mejora tomado del propio texto del usuario
|
102 |
+
4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso)
|
103 |
+
|
104 |
+
Tu respuesta debe ser concisa y no exceder los 300 palabras."""
|
105 |
+
else:
|
106 |
+
# Default to English
|
107 |
+
system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
|
108 |
+
Your task is to analyze the user's text and provide personalized recommendations.
|
109 |
+
Use a constructive and specific tone. Be clear and direct with your suggestions.
|
110 |
+
"""
|
111 |
+
user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}'
|
112 |
+
and provide personalized recommendations to improve it.
|
113 |
+
|
114 |
+
ANALYSIS METRICS:
|
115 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
116 |
+
|
117 |
+
TEXT TO ANALYZE:
|
118 |
+
{text[:2000]} # Limiting text to avoid exceeding tokens
|
119 |
+
|
120 |
+
Provide your analysis with the following format:
|
121 |
+
1. A brief summary (2-3 sentences) of the general analysis
|
122 |
+
2. 3-4 specific and actionable recommendations (each 1-2 sentences)
|
123 |
+
3. A concrete example of improvement taken from the user's own text
|
124 |
+
4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis)
|
125 |
+
|
126 |
+
Your response should be concise and not exceed 300 words."""
|
127 |
+
|
128 |
+
elif lang_code == 'uk':
|
129 |
+
system_prompt = """Ви - асистент, який спеціалізується на аналізі академічних текстів та письмовій комунікації.
|
130 |
+
Ваше завдання - проаналізувати текст користувача та надати персоналізовані рекомендації.
|
131 |
+
Використовуйте конструктивний та конкретний тон. Будьте ясними та прямими у ваших пропозиціях.
|
132 |
+
"""
|
133 |
+
user_prompt = f"""Будь ласка, проаналізуйте цей текст типу '{formatted_metrics['text_type']}'
|
134 |
+
та надайте персоналізовані рекомендації для його покращення.
|
135 |
+
|
136 |
+
МЕТРИКИ АНАЛІЗУ:
|
137 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
138 |
+
|
139 |
+
ТЕКСТ ДЛЯ АНАЛІЗУ:
|
140 |
+
{text[:2000]}
|
141 |
+
|
142 |
+
Надайте свій аналіз у такому форматі:
|
143 |
+
1. Короткий підсумок (2-3 речення) загального аналізу
|
144 |
+
2. 3-4 конкретні та дієві рекомендації (кожна по 1-2 речення)
|
145 |
+
3. Конкретний приклад покращення, взятий з власного тексту користувача
|
146 |
+
4. Пропозиція щодо використання інструмента AIdeaText (Морфосинтаксичний аналіз, Семантичний аналіз або Аналіз дискурсу)
|
147 |
+
|
148 |
+
Ваша відповідь має бути стислою та не перевищувати 300 слів."""
|
149 |
+
|
150 |
+
# Initialize Claude client
|
151 |
+
client = anthropic.Anthropic(api_key=api_key)
|
152 |
+
|
153 |
+
# Call Claude API
|
154 |
+
start_time = time.time()
|
155 |
+
response = client.messages.create(
|
156 |
+
model="claude-3-5-sonnet-20241022",
|
157 |
+
max_tokens=1024,
|
158 |
+
temperature=0.7,
|
159 |
+
system=system_prompt,
|
160 |
+
messages=[
|
161 |
+
{"role": "user", "content": user_prompt}
|
162 |
+
]
|
163 |
+
)
|
164 |
+
logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds")
|
165 |
+
|
166 |
+
# Extract recommendations
|
167 |
+
recommendations = response.content[0].text
|
168 |
+
|
169 |
+
# Cache the result
|
170 |
+
recommendation_cache[cache_key] = recommendations
|
171 |
+
|
172 |
+
return recommendations
|
173 |
+
except Exception as e:
|
174 |
+
logger.error(f"Error generating recommendations with Claude: {str(e)}")
|
175 |
+
return get_fallback_recommendations(lang_code)
|
176 |
+
|
177 |
+
##################################################################################
|
178 |
+
##################################################################################
|
179 |
+
def get_fallback_recommendations(lang_code):
|
180 |
+
"""
|
181 |
+
Return fallback recommendations if Claude API fails
|
182 |
+
"""
|
183 |
+
if lang_code == 'es':
|
184 |
+
return """
|
185 |
+
**Análisis General**
|
186 |
+
Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión.
|
187 |
+
|
188 |
+
**Recomendaciones**:
|
189 |
+
- Intenta variar tu vocabulario para evitar repeticiones innecesarias
|
190 |
+
- Considera revisar la longitud de tus oraciones para mantener un mejor ritmo
|
191 |
+
- Asegúrate de establecer conexiones claras entre las ideas principales
|
192 |
+
- Revisa la consistencia en el uso de tiempos verbales
|
193 |
+
|
194 |
+
**Herramienta recomendada**:
|
195 |
+
Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones.
|
196 |
+
"""
|
197 |
+
else:
|
198 |
+
return """
|
199 |
+
**General Analysis**
|
200 |
+
Your text presents an adequate basic structure, but there are areas that can be improved for better clarity and cohesion.
|
201 |
+
|
202 |
+
**Recommendations**:
|
203 |
+
- Try to vary your vocabulary to avoid unnecessary repetition
|
204 |
+
- Consider reviewing the length of your sentences to maintain a better rhythm
|
205 |
+
- Make sure to establish clear connections between main ideas
|
206 |
+
- Check consistency in the use of verb tenses
|
207 |
+
|
208 |
+
**Recommended tool**:
|
209 |
+
We suggest using Morphosyntactic Analysis to identify patterns in your sentence structure.
|
210 |
+
"""
|
211 |
+
|
212 |
+
elif lang_code == 'uk':
|
213 |
+
return """
|
214 |
+
**Загальний аналіз**
|
215 |
+
Ваш текст має адекватну базову структуру, але є області, які можна покращити для кращої ясності та зв'язності.
|
216 |
+
|
217 |
+
**Рекомендації**:
|
218 |
+
- Спробуйте урізноманітнити словниковий запас, щоб уникнути непотрібних повторень
|
219 |
+
- Розгляньте перегляд довжини ваших речень для підтримки кращого ритму
|
220 |
+
- Переконайтеся, що встановлюєте чіткі зв'язки між основними ідеями
|
221 |
+
- Перевірте послідовність у використанні дієслівних часів
|
222 |
+
|
223 |
+
**Рекомендований інструмент**:
|
224 |
+
Ми пропонуємо використовувати Морфосинтаксичний аналіз для виявлення закономірностей у структурі ваших речень.
|
225 |
+
"""
|
226 |
+
#######################################
|
227 |
+
#######################################
|
228 |
+
def store_recommendations(username, text, metrics, text_type, recommendations):
|
229 |
+
"""
|
230 |
+
Store the recommendations in the database
|
231 |
+
"""
|
232 |
+
try:
|
233 |
+
# Importar la función de almacenamiento de recomendaciones
|
234 |
+
from ..database.claude_recommendations_mongo_db import store_claude_recommendation
|
235 |
+
|
236 |
+
# Guardar usando la nueva función especializada
|
237 |
+
result = store_claude_recommendation(
|
238 |
+
username=username,
|
239 |
+
text=text,
|
240 |
+
metrics=metrics,
|
241 |
+
text_type=text_type,
|
242 |
+
recommendations=recommendations
|
243 |
+
)
|
244 |
+
|
245 |
+
logger.info(f"Recommendations stored successfully: {result}")
|
246 |
+
return result
|
247 |
+
except Exception as e:
|
248 |
+
logger.error(f"Error storing recommendations: {str(e)}")
|
249 |
+
return False
|
250 |
+
|
251 |
+
|
252 |
+
##########################################
|
253 |
+
##########################################
|
254 |
+
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
255 |
+
"""
|
256 |
+
Display personalized recommendations based on text analysis
|
257 |
+
"""
|
258 |
+
try:
|
259 |
+
# Generate recommendations
|
260 |
+
recommendations = generate_claude_recommendations(text, metrics, text_type, lang_code)
|
261 |
+
|
262 |
+
# Format and display recommendations in a nice container
|
263 |
+
st.markdown("### 📝 " + t.get('recommendations_title', 'Personalized Recommendations'))
|
264 |
+
|
265 |
+
with st.container():
|
266 |
+
st.markdown(f"""
|
267 |
+
<div style="padding: 20px; border-radius: 10px;
|
268 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
269 |
+
{recommendations}
|
270 |
+
</div>
|
271 |
+
""", unsafe_allow_html=True)
|
272 |
+
|
273 |
+
# Add prompt to use assistant
|
274 |
+
st.info("💡 **" + t.get('assistant_prompt', 'For further improvement:') + "** " +
|
275 |
+
t.get('assistant_message', 'Open the virtual assistant (powered by Claude AI) in the upper left corner by clicking the arrow next to the logo.'))
|
276 |
+
|
277 |
+
# Add save button
|
278 |
+
col1, col2, col3 = st.columns([1,1,1])
|
279 |
+
with col2:
|
280 |
+
if st.button(
|
281 |
+
t.get('save_button', 'Save Analysis'),
|
282 |
+
key=generate_unique_key("claude_recommendations", "save"),
|
283 |
+
type="primary",
|
284 |
+
use_container_width=True
|
285 |
+
):
|
286 |
+
if 'username' in st.session_state:
|
287 |
+
success = store_recommendations(
|
288 |
+
st.session_state.username,
|
289 |
+
text,
|
290 |
+
metrics,
|
291 |
+
text_type,
|
292 |
+
recommendations
|
293 |
+
)
|
294 |
+
if success:
|
295 |
+
st.success(t.get('save_success', 'Analysis saved successfully'))
|
296 |
+
else:
|
297 |
+
st.error(t.get('save_error', 'Error saving analysis'))
|
298 |
+
else:
|
299 |
+
st.error(t.get('login_required', 'Please log in to save analysis'))
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Error displaying recommendations: {str(e)}")
|
303 |
st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.'))
|