Update modules/discourse/discourse_interface.py
Browse files- modules/discourse/discourse_interface.py +280 -280
modules/discourse/discourse_interface.py
CHANGED
@@ -1,281 +1,281 @@
|
|
1 |
-
# modules/discourse/discourse/discourse_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import pandas as pd
|
5 |
-
import plotly.graph_objects as go
|
6 |
-
import logging
|
7 |
-
from ..utils.widget_utils import generate_unique_key
|
8 |
-
from .discourse_process import perform_discourse_analysis
|
9 |
-
from ..database.chat_mongo_db import store_chat_history
|
10 |
-
from ..database.discourse_mongo_db import store_student_discourse_result
|
11 |
-
|
12 |
-
logger = logging.getLogger(__name__)
|
13 |
-
|
14 |
-
def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
15 |
-
"""
|
16 |
-
Interfaz para el análisis del discurso
|
17 |
-
Args:
|
18 |
-
lang_code: Código del idioma actual
|
19 |
-
nlp_models: Modelos de spaCy cargados
|
20 |
-
discourse_t: Diccionario de traducciones
|
21 |
-
"""
|
22 |
-
try:
|
23 |
-
# 1. Inicializar estado si no existe
|
24 |
-
if 'discourse_state' not in st.session_state:
|
25 |
-
st.session_state.discourse_state = {
|
26 |
-
'analysis_count': 0,
|
27 |
-
'last_analysis': None,
|
28 |
-
'current_files': None
|
29 |
-
}
|
30 |
-
|
31 |
-
# 2. Título y descripción
|
32 |
-
st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso'))
|
33 |
-
st.info(discourse_t.get('initial_instruction',
|
34 |
-
'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.'))
|
35 |
-
|
36 |
-
# 3. Área de carga de archivos
|
37 |
-
col1, col2 = st.columns(2)
|
38 |
-
with col1:
|
39 |
-
st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**"))
|
40 |
-
uploaded_file1 = st.file_uploader(
|
41 |
-
discourse_t.get('file_uploader1', "Cargar archivo 1"),
|
42 |
-
type=['txt'],
|
43 |
-
key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}"
|
44 |
-
)
|
45 |
-
|
46 |
-
with col2:
|
47 |
-
st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**"))
|
48 |
-
uploaded_file2 = st.file_uploader(
|
49 |
-
discourse_t.get('file_uploader2', "Cargar archivo 2"),
|
50 |
-
type=['txt'],
|
51 |
-
key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}"
|
52 |
-
)
|
53 |
-
|
54 |
-
# 4. Botón de análisis
|
55 |
-
col1, col2, col3 = st.columns([1,2,1])
|
56 |
-
with col1:
|
57 |
-
analyze_button = st.button(
|
58 |
-
discourse_t.get('discourse_analyze_button', '
|
59 |
-
key=generate_unique_key("discourse", "analyze_button"),
|
60 |
-
type="primary",
|
61 |
-
icon="🔍",
|
62 |
-
disabled=not (uploaded_file1 and uploaded_file2),
|
63 |
-
use_container_width=True
|
64 |
-
)
|
65 |
-
|
66 |
-
# 5. Proceso de análisis
|
67 |
-
if analyze_button and uploaded_file1 and uploaded_file2:
|
68 |
-
try:
|
69 |
-
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')):
|
70 |
-
# Leer contenido de archivos
|
71 |
-
text1 = uploaded_file1.getvalue().decode('utf-8')
|
72 |
-
text2 = uploaded_file2.getvalue().decode('utf-8')
|
73 |
-
|
74 |
-
# Realizar análisis
|
75 |
-
result = perform_discourse_analysis(
|
76 |
-
text1,
|
77 |
-
text2,
|
78 |
-
nlp_models[lang_code],
|
79 |
-
lang_code
|
80 |
-
)
|
81 |
-
|
82 |
-
if result['success']:
|
83 |
-
# Guardar estado
|
84 |
-
st.session_state.discourse_result = result
|
85 |
-
st.session_state.discourse_state['analysis_count'] += 1
|
86 |
-
st.session_state.discourse_state['current_files'] = (
|
87 |
-
uploaded_file1.name,
|
88 |
-
uploaded_file2.name
|
89 |
-
)
|
90 |
-
|
91 |
-
# Guardar en base de datos
|
92 |
-
if store_student_discourse_result(
|
93 |
-
st.session_state.username,
|
94 |
-
text1,
|
95 |
-
text2,
|
96 |
-
result
|
97 |
-
):
|
98 |
-
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente'))
|
99 |
-
|
100 |
-
# Mostrar resultados
|
101 |
-
display_discourse_results(result, lang_code, discourse_t)
|
102 |
-
else:
|
103 |
-
st.error(discourse_t.get('error_message', 'Error al guardar el análisis'))
|
104 |
-
else:
|
105 |
-
st.error(discourse_t.get('analysis_error', 'Error en el análisis'))
|
106 |
-
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Error en análisis del discurso: {str(e)}")
|
109 |
-
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}'))
|
110 |
-
|
111 |
-
# 6. Mostrar resultados previos
|
112 |
-
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
|
113 |
-
if st.session_state.discourse_state.get('current_files'):
|
114 |
-
st.info(
|
115 |
-
discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}')
|
116 |
-
.format(*st.session_state.discourse_state['current_files'])
|
117 |
-
)
|
118 |
-
display_discourse_results(
|
119 |
-
st.session_state.discourse_result,
|
120 |
-
lang_code,
|
121 |
-
discourse_t
|
122 |
-
)
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
126 |
-
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
#####################################################################################################################
|
131 |
-
|
132 |
-
def display_discourse_results(result, lang_code, discourse_t):
|
133 |
-
"""
|
134 |
-
Muestra los resultados del análisis del discurso
|
135 |
-
"""
|
136 |
-
if not result.get('success'):
|
137 |
-
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
138 |
-
return
|
139 |
-
|
140 |
-
# Estilo CSS
|
141 |
-
st.markdown("""
|
142 |
-
<style>
|
143 |
-
.concepts-container {
|
144 |
-
display: flex;
|
145 |
-
flex-wrap: nowrap;
|
146 |
-
gap: 8px;
|
147 |
-
padding: 12px;
|
148 |
-
background-color: #f8f9fa;
|
149 |
-
border-radius: 8px;
|
150 |
-
overflow-x: auto;
|
151 |
-
margin-bottom: 15px;
|
152 |
-
white-space: nowrap;
|
153 |
-
}
|
154 |
-
.concept-item {
|
155 |
-
background-color: white;
|
156 |
-
border-radius: 4px;
|
157 |
-
padding: 6px 10px;
|
158 |
-
display: inline-flex;
|
159 |
-
align-items: center;
|
160 |
-
gap: 4px;
|
161 |
-
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
162 |
-
flex-shrink: 0;
|
163 |
-
}
|
164 |
-
.concept-name {
|
165 |
-
font-weight: 500;
|
166 |
-
color: #1f2937;
|
167 |
-
font-size: 0.85em;
|
168 |
-
}
|
169 |
-
.concept-freq {
|
170 |
-
color: #6b7280;
|
171 |
-
font-size: 0.75em;
|
172 |
-
}
|
173 |
-
.graph-container {
|
174 |
-
background-color: white;
|
175 |
-
padding: 15px;
|
176 |
-
border-radius: 8px;
|
177 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
178 |
-
margin-top: 10px;
|
179 |
-
}
|
180 |
-
</style>
|
181 |
-
""", unsafe_allow_html=True)
|
182 |
-
|
183 |
-
col1, col2 = st.columns(2)
|
184 |
-
|
185 |
-
# Documento 1
|
186 |
-
with col1:
|
187 |
-
st.subheader(discourse_t.get('doc1_title', 'Documento 1'))
|
188 |
-
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
189 |
-
if 'key_concepts1' in result:
|
190 |
-
concepts_html = f"""
|
191 |
-
<div class="concepts-container">
|
192 |
-
{''.join([
|
193 |
-
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
194 |
-
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
195 |
-
for concept, freq in result['key_concepts1']
|
196 |
-
])}
|
197 |
-
</div>
|
198 |
-
"""
|
199 |
-
st.markdown(concepts_html, unsafe_allow_html=True)
|
200 |
-
|
201 |
-
if 'graph1' in result:
|
202 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
203 |
-
st.pyplot(result['graph1'])
|
204 |
-
|
205 |
-
# Botones y controles
|
206 |
-
button_col1, spacer_col1 = st.columns([1,4])
|
207 |
-
with button_col1:
|
208 |
-
if 'graph1_bytes' in result:
|
209 |
-
st.download_button(
|
210 |
-
label="📥 " + discourse_t.get('download_graph', "Download"),
|
211 |
-
data=result['graph1_bytes'],
|
212 |
-
file_name="discourse_graph1.png",
|
213 |
-
mime="image/png",
|
214 |
-
use_container_width=True
|
215 |
-
)
|
216 |
-
|
217 |
-
# Interpretación como texto normal sin expander
|
218 |
-
st.markdown("**📊 Interpretación del grafo:**")
|
219 |
-
st.markdown("""
|
220 |
-
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
221 |
-
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
222 |
-
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
223 |
-
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
224 |
-
""")
|
225 |
-
|
226 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
227 |
-
else:
|
228 |
-
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
229 |
-
else:
|
230 |
-
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
231 |
-
|
232 |
-
# Documento 2
|
233 |
-
with col2:
|
234 |
-
st.subheader(discourse_t.get('doc2_title', 'Documento 2'))
|
235 |
-
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
236 |
-
if 'key_concepts2' in result:
|
237 |
-
concepts_html = f"""
|
238 |
-
<div class="concepts-container">
|
239 |
-
{''.join([
|
240 |
-
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
241 |
-
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
242 |
-
for concept, freq in result['key_concepts2']
|
243 |
-
])}
|
244 |
-
</div>
|
245 |
-
"""
|
246 |
-
st.markdown(concepts_html, unsafe_allow_html=True)
|
247 |
-
|
248 |
-
if 'graph2' in result:
|
249 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
250 |
-
st.pyplot(result['graph2'])
|
251 |
-
|
252 |
-
# Botones y controles
|
253 |
-
button_col2, spacer_col2 = st.columns([1,4])
|
254 |
-
with button_col2:
|
255 |
-
if 'graph2_bytes' in result:
|
256 |
-
st.download_button(
|
257 |
-
label="📥 " + discourse_t.get('download_graph', "Download"),
|
258 |
-
data=result['graph2_bytes'],
|
259 |
-
file_name="discourse_graph2.png",
|
260 |
-
mime="image/png",
|
261 |
-
use_container_width=True
|
262 |
-
)
|
263 |
-
|
264 |
-
# Interpretación como texto normal sin expander
|
265 |
-
st.markdown("**📊 Interpretación del grafo:**")
|
266 |
-
st.markdown("""
|
267 |
-
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
268 |
-
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
269 |
-
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
270 |
-
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
271 |
-
""")
|
272 |
-
|
273 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
274 |
-
else:
|
275 |
-
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
276 |
-
else:
|
277 |
-
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
278 |
-
|
279 |
-
# Nota informativa sobre la comparación
|
280 |
-
st.info(discourse_t.get('comparison_note',
|
281 |
'La funcionalidad de comparación detallada estará disponible en una próxima actualización.'))
|
|
|
1 |
+
# modules/discourse/discourse/discourse_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import logging
|
7 |
+
from ..utils.widget_utils import generate_unique_key
|
8 |
+
from .discourse_process import perform_discourse_analysis
|
9 |
+
from ..database.chat_mongo_db import store_chat_history
|
10 |
+
from ..database.discourse_mongo_db import store_student_discourse_result
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
15 |
+
"""
|
16 |
+
Interfaz para el análisis del discurso
|
17 |
+
Args:
|
18 |
+
lang_code: Código del idioma actual
|
19 |
+
nlp_models: Modelos de spaCy cargados
|
20 |
+
discourse_t: Diccionario de traducciones
|
21 |
+
"""
|
22 |
+
try:
|
23 |
+
# 1. Inicializar estado si no existe
|
24 |
+
if 'discourse_state' not in st.session_state:
|
25 |
+
st.session_state.discourse_state = {
|
26 |
+
'analysis_count': 0,
|
27 |
+
'last_analysis': None,
|
28 |
+
'current_files': None
|
29 |
+
}
|
30 |
+
|
31 |
+
# 2. Título y descripción
|
32 |
+
st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso'))
|
33 |
+
st.info(discourse_t.get('initial_instruction',
|
34 |
+
'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.'))
|
35 |
+
|
36 |
+
# 3. Área de carga de archivos
|
37 |
+
col1, col2 = st.columns(2)
|
38 |
+
with col1:
|
39 |
+
st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**"))
|
40 |
+
uploaded_file1 = st.file_uploader(
|
41 |
+
discourse_t.get('file_uploader1', "Cargar archivo 1"),
|
42 |
+
type=['txt'],
|
43 |
+
key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}"
|
44 |
+
)
|
45 |
+
|
46 |
+
with col2:
|
47 |
+
st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**"))
|
48 |
+
uploaded_file2 = st.file_uploader(
|
49 |
+
discourse_t.get('file_uploader2', "Cargar archivo 2"),
|
50 |
+
type=['txt'],
|
51 |
+
key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}"
|
52 |
+
)
|
53 |
+
|
54 |
+
# 4. Botón de análisis
|
55 |
+
col1, col2, col3 = st.columns([1,2,1])
|
56 |
+
with col1:
|
57 |
+
analyze_button = st.button(
|
58 |
+
discourse_t.get('discourse_analyze_button', 'Comparar textos'),
|
59 |
+
key=generate_unique_key("discourse", "analyze_button"),
|
60 |
+
type="primary",
|
61 |
+
icon="🔍",
|
62 |
+
disabled=not (uploaded_file1 and uploaded_file2),
|
63 |
+
use_container_width=True
|
64 |
+
)
|
65 |
+
|
66 |
+
# 5. Proceso de análisis
|
67 |
+
if analyze_button and uploaded_file1 and uploaded_file2:
|
68 |
+
try:
|
69 |
+
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')):
|
70 |
+
# Leer contenido de archivos
|
71 |
+
text1 = uploaded_file1.getvalue().decode('utf-8')
|
72 |
+
text2 = uploaded_file2.getvalue().decode('utf-8')
|
73 |
+
|
74 |
+
# Realizar análisis
|
75 |
+
result = perform_discourse_analysis(
|
76 |
+
text1,
|
77 |
+
text2,
|
78 |
+
nlp_models[lang_code],
|
79 |
+
lang_code
|
80 |
+
)
|
81 |
+
|
82 |
+
if result['success']:
|
83 |
+
# Guardar estado
|
84 |
+
st.session_state.discourse_result = result
|
85 |
+
st.session_state.discourse_state['analysis_count'] += 1
|
86 |
+
st.session_state.discourse_state['current_files'] = (
|
87 |
+
uploaded_file1.name,
|
88 |
+
uploaded_file2.name
|
89 |
+
)
|
90 |
+
|
91 |
+
# Guardar en base de datos
|
92 |
+
if store_student_discourse_result(
|
93 |
+
st.session_state.username,
|
94 |
+
text1,
|
95 |
+
text2,
|
96 |
+
result
|
97 |
+
):
|
98 |
+
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente'))
|
99 |
+
|
100 |
+
# Mostrar resultados
|
101 |
+
display_discourse_results(result, lang_code, discourse_t)
|
102 |
+
else:
|
103 |
+
st.error(discourse_t.get('error_message', 'Error al guardar el análisis'))
|
104 |
+
else:
|
105 |
+
st.error(discourse_t.get('analysis_error', 'Error en el análisis'))
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"Error en análisis del discurso: {str(e)}")
|
109 |
+
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}'))
|
110 |
+
|
111 |
+
# 6. Mostrar resultados previos
|
112 |
+
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
|
113 |
+
if st.session_state.discourse_state.get('current_files'):
|
114 |
+
st.info(
|
115 |
+
discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}')
|
116 |
+
.format(*st.session_state.discourse_state['current_files'])
|
117 |
+
)
|
118 |
+
display_discourse_results(
|
119 |
+
st.session_state.discourse_result,
|
120 |
+
lang_code,
|
121 |
+
discourse_t
|
122 |
+
)
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
126 |
+
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
#####################################################################################################################
|
131 |
+
|
132 |
+
def display_discourse_results(result, lang_code, discourse_t):
|
133 |
+
"""
|
134 |
+
Muestra los resultados del análisis del discurso
|
135 |
+
"""
|
136 |
+
if not result.get('success'):
|
137 |
+
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
138 |
+
return
|
139 |
+
|
140 |
+
# Estilo CSS
|
141 |
+
st.markdown("""
|
142 |
+
<style>
|
143 |
+
.concepts-container {
|
144 |
+
display: flex;
|
145 |
+
flex-wrap: nowrap;
|
146 |
+
gap: 8px;
|
147 |
+
padding: 12px;
|
148 |
+
background-color: #f8f9fa;
|
149 |
+
border-radius: 8px;
|
150 |
+
overflow-x: auto;
|
151 |
+
margin-bottom: 15px;
|
152 |
+
white-space: nowrap;
|
153 |
+
}
|
154 |
+
.concept-item {
|
155 |
+
background-color: white;
|
156 |
+
border-radius: 4px;
|
157 |
+
padding: 6px 10px;
|
158 |
+
display: inline-flex;
|
159 |
+
align-items: center;
|
160 |
+
gap: 4px;
|
161 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
162 |
+
flex-shrink: 0;
|
163 |
+
}
|
164 |
+
.concept-name {
|
165 |
+
font-weight: 500;
|
166 |
+
color: #1f2937;
|
167 |
+
font-size: 0.85em;
|
168 |
+
}
|
169 |
+
.concept-freq {
|
170 |
+
color: #6b7280;
|
171 |
+
font-size: 0.75em;
|
172 |
+
}
|
173 |
+
.graph-container {
|
174 |
+
background-color: white;
|
175 |
+
padding: 15px;
|
176 |
+
border-radius: 8px;
|
177 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
178 |
+
margin-top: 10px;
|
179 |
+
}
|
180 |
+
</style>
|
181 |
+
""", unsafe_allow_html=True)
|
182 |
+
|
183 |
+
col1, col2 = st.columns(2)
|
184 |
+
|
185 |
+
# Documento 1
|
186 |
+
with col1:
|
187 |
+
st.subheader(discourse_t.get('doc1_title', 'Documento 1'))
|
188 |
+
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
189 |
+
if 'key_concepts1' in result:
|
190 |
+
concepts_html = f"""
|
191 |
+
<div class="concepts-container">
|
192 |
+
{''.join([
|
193 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
194 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
195 |
+
for concept, freq in result['key_concepts1']
|
196 |
+
])}
|
197 |
+
</div>
|
198 |
+
"""
|
199 |
+
st.markdown(concepts_html, unsafe_allow_html=True)
|
200 |
+
|
201 |
+
if 'graph1' in result:
|
202 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
203 |
+
st.pyplot(result['graph1'])
|
204 |
+
|
205 |
+
# Botones y controles
|
206 |
+
button_col1, spacer_col1 = st.columns([1,4])
|
207 |
+
with button_col1:
|
208 |
+
if 'graph1_bytes' in result:
|
209 |
+
st.download_button(
|
210 |
+
label="📥 " + discourse_t.get('download_graph', "Download"),
|
211 |
+
data=result['graph1_bytes'],
|
212 |
+
file_name="discourse_graph1.png",
|
213 |
+
mime="image/png",
|
214 |
+
use_container_width=True
|
215 |
+
)
|
216 |
+
|
217 |
+
# Interpretación como texto normal sin expander
|
218 |
+
st.markdown("**📊 Interpretación del grafo:**")
|
219 |
+
st.markdown("""
|
220 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
221 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
222 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
223 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
224 |
+
""")
|
225 |
+
|
226 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
227 |
+
else:
|
228 |
+
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
229 |
+
else:
|
230 |
+
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
231 |
+
|
232 |
+
# Documento 2
|
233 |
+
with col2:
|
234 |
+
st.subheader(discourse_t.get('doc2_title', 'Documento 2'))
|
235 |
+
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
236 |
+
if 'key_concepts2' in result:
|
237 |
+
concepts_html = f"""
|
238 |
+
<div class="concepts-container">
|
239 |
+
{''.join([
|
240 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
241 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
242 |
+
for concept, freq in result['key_concepts2']
|
243 |
+
])}
|
244 |
+
</div>
|
245 |
+
"""
|
246 |
+
st.markdown(concepts_html, unsafe_allow_html=True)
|
247 |
+
|
248 |
+
if 'graph2' in result:
|
249 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
250 |
+
st.pyplot(result['graph2'])
|
251 |
+
|
252 |
+
# Botones y controles
|
253 |
+
button_col2, spacer_col2 = st.columns([1,4])
|
254 |
+
with button_col2:
|
255 |
+
if 'graph2_bytes' in result:
|
256 |
+
st.download_button(
|
257 |
+
label="📥 " + discourse_t.get('download_graph', "Download"),
|
258 |
+
data=result['graph2_bytes'],
|
259 |
+
file_name="discourse_graph2.png",
|
260 |
+
mime="image/png",
|
261 |
+
use_container_width=True
|
262 |
+
)
|
263 |
+
|
264 |
+
# Interpretación como texto normal sin expander
|
265 |
+
st.markdown("**📊 Interpretación del grafo:**")
|
266 |
+
st.markdown("""
|
267 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
268 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
269 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
270 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
271 |
+
""")
|
272 |
+
|
273 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
274 |
+
else:
|
275 |
+
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
276 |
+
else:
|
277 |
+
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
278 |
+
|
279 |
+
# Nota informativa sobre la comparación
|
280 |
+
st.info(discourse_t.get('comparison_note',
|
281 |
'La funcionalidad de comparación detallada estará disponible en una próxima actualización.'))
|