Update modules/studentact/student_activities_v2.py
Browse files
modules/studentact/student_activities_v2.py
CHANGED
@@ -538,239 +538,111 @@ def display_semantic_activities(username: str, t: dict):
|
|
538 |
|
539 |
def display_discourse_activities(username: str, t: dict):
|
540 |
"""
|
541 |
-
Muestra actividades de análisis del discurso
|
542 |
"""
|
543 |
try:
|
544 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
545 |
-
|
546 |
-
# Obtener análisis del discurso con el tipo correcto
|
547 |
-
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
548 |
analyses = get_student_discourse_analysis(username)
|
549 |
|
550 |
if not analyses:
|
551 |
logger.info("No se encontraron análisis del discurso")
|
552 |
-
# Usamos el término "análisis comparado de textos" en la UI
|
553 |
st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
|
554 |
return
|
555 |
|
556 |
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
557 |
for analysis in analyses:
|
558 |
try:
|
559 |
-
# Verificar campos mínimos necesarios
|
560 |
-
if 'timestamp' not in analysis:
|
561 |
-
logger.warning(f"Análisis sin timestamp: {analysis.keys()}")
|
562 |
-
continue
|
563 |
-
|
564 |
# Formatear fecha
|
565 |
-
|
566 |
-
|
567 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
568 |
-
except Exception as e:
|
569 |
-
logger.error(f"Error al formatear timestamp: {str(e)}")
|
570 |
-
formatted_date = str(analysis.get('timestamp', 'Fecha desconocida'))
|
571 |
|
572 |
-
#
|
573 |
expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
574 |
|
575 |
with st.expander(expander_title, expanded=False):
|
576 |
-
#
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
|
583 |
-
#
|
584 |
-
|
585 |
-
if 'text1' in analysis and analysis['text1']:
|
586 |
-
st.text_area(
|
587 |
-
"Texto 1",
|
588 |
-
value=analysis['text1'],
|
589 |
-
height=150,
|
590 |
-
disabled=True,
|
591 |
-
label_visibility="collapsed",
|
592 |
-
key=f"text1_{str(analysis['_id'])}"
|
593 |
-
)
|
594 |
-
|
595 |
-
# Mostrar conceptos clave del texto 1
|
596 |
-
if 'key_concepts1' in analysis and analysis['key_concepts1']:
|
597 |
-
st.subheader(t.get('key_concepts1', 'Conceptos clave (Texto 1)'))
|
598 |
-
|
599 |
-
# Crear una tabla/dataframe de conceptos
|
600 |
-
concept_data = analysis['key_concepts1']
|
601 |
-
if concept_data and len(concept_data) > 0:
|
602 |
-
# Verificar formato de los datos
|
603 |
-
if isinstance(concept_data[0], list) and len(concept_data[0]) == 2:
|
604 |
-
# Formato esperado: [["concepto", valor], ...]
|
605 |
-
df = pd.DataFrame(concept_data, columns=['Concepto', 'Relevancia'])
|
606 |
-
st.dataframe(df, use_container_width=True)
|
607 |
-
else:
|
608 |
-
st.write(concept_data) # Mostrar como está si no tiene el formato esperado
|
609 |
-
else:
|
610 |
-
st.info(t.get('no_concepts1', 'No hay conceptos clave disponibles para el Texto 1'))
|
611 |
-
|
612 |
-
# Mostrar gráfico si existe
|
613 |
-
if 'graph1' in analysis and analysis['graph1']:
|
614 |
-
st.subheader(t.get('graph1', 'Visualización del Texto 1'))
|
615 |
-
try:
|
616 |
-
if isinstance(analysis['graph1'], str) and analysis['graph1'].startswith('data:image'):
|
617 |
-
# Manejo para string base64
|
618 |
-
import base64
|
619 |
-
image_bytes = base64.b64decode(analysis['graph1'].split(',')[1])
|
620 |
-
st.image(image_bytes, use_column_width=True)
|
621 |
-
elif isinstance(analysis['graph1'], bytes):
|
622 |
-
# Manejo para bytes directos
|
623 |
-
st.image(analysis['graph1'], use_column_width=True)
|
624 |
-
else:
|
625 |
-
# Otro tipo de gráfico (matplotlib, etc.)
|
626 |
-
st.pyplot(analysis['graph1'])
|
627 |
-
except Exception as e:
|
628 |
-
logger.error(f"Error mostrando gráfico 1: {str(e)}")
|
629 |
-
st.error(t.get('error_graph1', 'Error al mostrar el gráfico del Texto 1'))
|
630 |
-
else:
|
631 |
-
st.info(t.get('no_text1', 'Texto 1 no disponible'))
|
632 |
|
633 |
-
#
|
634 |
-
|
635 |
-
if 'text2' in analysis and analysis['text2']:
|
636 |
-
st.text_area(
|
637 |
-
"Texto 2",
|
638 |
-
value=analysis['text2'],
|
639 |
-
height=150,
|
640 |
-
disabled=True,
|
641 |
-
label_visibility="collapsed",
|
642 |
-
key=f"text2_{str(analysis['_id'])}"
|
643 |
-
)
|
644 |
-
|
645 |
-
# Mostrar conceptos clave del texto 2
|
646 |
-
if 'key_concepts2' in analysis and analysis['key_concepts2']:
|
647 |
-
st.subheader(t.get('key_concepts2', 'Conceptos clave (Texto 2)'))
|
648 |
-
|
649 |
-
# Crear una tabla/dataframe de conceptos
|
650 |
-
concept_data = analysis['key_concepts2']
|
651 |
-
if concept_data and len(concept_data) > 0:
|
652 |
-
# Verificar formato de los datos
|
653 |
-
if isinstance(concept_data[0], list) and len(concept_data[0]) == 2:
|
654 |
-
# Formato esperado: [["concepto", valor], ...]
|
655 |
-
df = pd.DataFrame(concept_data, columns=['Concepto', 'Relevancia'])
|
656 |
-
st.dataframe(df, use_container_width=True)
|
657 |
-
else:
|
658 |
-
st.write(concept_data) # Mostrar como está si no tiene el formato esperado
|
659 |
-
else:
|
660 |
-
st.info(t.get('no_concepts2', 'No hay conceptos clave disponibles para el Texto 2'))
|
661 |
-
|
662 |
-
# Mostrar gráfico si existe
|
663 |
-
if 'graph2' in analysis and analysis['graph2']:
|
664 |
-
st.subheader(t.get('graph2', 'Visualización del Texto 2'))
|
665 |
-
try:
|
666 |
-
if isinstance(analysis['graph2'], str) and analysis['graph2'].startswith('data:image'):
|
667 |
-
# Manejo para string base64
|
668 |
-
import base64
|
669 |
-
image_bytes = base64.b64decode(analysis['graph2'].split(',')[1])
|
670 |
-
st.image(image_bytes, use_column_width=True)
|
671 |
-
elif isinstance(analysis['graph2'], bytes):
|
672 |
-
# Manejo para bytes directos
|
673 |
-
st.image(analysis['graph2'], use_column_width=True)
|
674 |
-
else:
|
675 |
-
# Otro tipo de gráfico (matplotlib, etc.)
|
676 |
-
st.pyplot(analysis['graph2'])
|
677 |
-
except Exception as e:
|
678 |
-
logger.error(f"Error mostrando gráfico 2: {str(e)}")
|
679 |
-
st.error(t.get('error_graph2', 'Error al mostrar el gráfico del Texto 2'))
|
680 |
-
else:
|
681 |
-
# Caso especial: si text2 está ausente pero text1 está presente
|
682 |
-
# mostrar text1 aquí también (para documentos de un solo texto)
|
683 |
-
if 'text1' in analysis and analysis['text1']:
|
684 |
-
st.info(t.get('using_text1', 'Usando el mismo texto como referencia.'))
|
685 |
-
st.text_area(
|
686 |
-
"Texto 1 como referencia",
|
687 |
-
value=analysis['text1'],
|
688 |
-
height=150,
|
689 |
-
disabled=True,
|
690 |
-
label_visibility="collapsed",
|
691 |
-
key=f"text1_ref_{str(analysis['_id'])}"
|
692 |
-
)
|
693 |
-
else:
|
694 |
-
st.info(t.get('no_text2', 'Texto 2 no disponible'))
|
695 |
|
696 |
-
#
|
697 |
-
with
|
698 |
-
|
699 |
-
if 'combined_graph' in analysis and analysis['combined_graph']:
|
700 |
-
st.subheader(t.get('combined_visualization', 'Visualización comparativa'))
|
701 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
if isinstance(analysis['combined_graph'], str):
|
703 |
-
|
704 |
-
if analysis['combined_graph'].startswith('data:image'):
|
705 |
import base64
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
import base64
|
711 |
image_bytes = base64.b64decode(analysis['combined_graph'])
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
st.image(image_bytes, use_column_width=True)
|
717 |
elif isinstance(analysis['combined_graph'], bytes):
|
718 |
-
# Si son bytes directos
|
719 |
st.image(analysis['combined_graph'], use_column_width=True)
|
720 |
-
|
721 |
-
# Otro tipo de gráfico
|
722 |
st.pyplot(analysis['combined_graph'])
|
723 |
except Exception as e:
|
724 |
logger.error(f"Error mostrando gráfico combinado: {str(e)}")
|
725 |
-
st.error(t.get('error_combined_graph', 'Error
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
st.subheader(t.get('concept_comparison', 'Comparación de conceptos clave'))
|
732 |
-
col1, col2 = st.columns(2)
|
733 |
-
|
734 |
-
with col1:
|
735 |
-
st.markdown(f"**{t.get('text1_concepts', 'Conceptos del Texto 1')}**")
|
736 |
-
concept_data1 = analysis['key_concepts1']
|
737 |
-
if concept_data1 and len(concept_data1) > 0:
|
738 |
-
if isinstance(concept_data1[0], list) and len(concept_data1[0]) == 2:
|
739 |
-
df1 = pd.DataFrame(concept_data1, columns=['Concepto', 'Relevancia'])
|
740 |
-
st.dataframe(df1, use_container_width=True)
|
741 |
-
else:
|
742 |
-
st.write(concept_data1)
|
743 |
-
|
744 |
-
with col2:
|
745 |
-
st.markdown(f"**{t.get('text2_concepts', 'Conceptos del Texto 2')}**")
|
746 |
-
concept_data2 = analysis['key_concepts2']
|
747 |
-
if concept_data2 and len(concept_data2) > 0:
|
748 |
-
if isinstance(concept_data2[0], list) and len(concept_data2[0]) == 2:
|
749 |
-
df2 = pd.DataFrame(concept_data2, columns=['Concepto', 'Relevancia'])
|
750 |
-
st.dataframe(df2, use_container_width=True)
|
751 |
-
else:
|
752 |
-
st.write(concept_data2)
|
753 |
-
|
754 |
-
# Mostrar conceptos en común (intersección)
|
755 |
-
if (isinstance(analysis['key_concepts1'], list) and
|
756 |
-
isinstance(analysis['key_concepts2'], list)):
|
757 |
-
|
758 |
-
concepts1 = [item[0] for item in analysis['key_concepts1'] if isinstance(item, list) and len(item) == 2]
|
759 |
-
concepts2 = [item[0] for item in analysis['key_concepts2'] if isinstance(item, list) and len(item) == 2]
|
760 |
-
|
761 |
-
common_concepts = set(concepts1).intersection(set(concepts2))
|
762 |
-
|
763 |
-
if common_concepts:
|
764 |
-
st.subheader(t.get('common_concepts', 'Conceptos en común'))
|
765 |
-
st.write(", ".join(common_concepts))
|
766 |
-
else:
|
767 |
-
st.info(t.get('no_common_concepts', 'No se encontraron conceptos en común entre los textos'))
|
768 |
-
else:
|
769 |
-
st.info(t.get('no_comparison_data', 'No hay datos suficientes para la comparación'))
|
770 |
-
|
771 |
-
# Nota sobre la comparación
|
772 |
-
st.info(t.get('comparison_note',
|
773 |
-
'La funcionalidad de comparación avanzada estará disponible en una próxima actualización.'))
|
774 |
|
775 |
except Exception as e:
|
776 |
logger.error(f"Error procesando análisis individual: {str(e)}")
|
@@ -778,9 +650,14 @@ def display_discourse_activities(username: str, t: dict):
|
|
778 |
|
779 |
except Exception as e:
|
780 |
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
781 |
-
# Usamos el término "análisis comparado de textos" en la UI
|
782 |
st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos'))
|
783 |
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
#################################################################################
|
785 |
def display_chat_activities(username: str, t: dict):
|
786 |
"""
|
|
|
538 |
|
539 |
def display_discourse_activities(username: str, t: dict):
|
540 |
"""
|
541 |
+
Muestra actividades de análisis del discurso centradas en las visualizaciones comparativas
|
542 |
"""
|
543 |
try:
|
544 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
|
|
|
|
|
|
545 |
analyses = get_student_discourse_analysis(username)
|
546 |
|
547 |
if not analyses:
|
548 |
logger.info("No se encontraron análisis del discurso")
|
|
|
549 |
st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
|
550 |
return
|
551 |
|
552 |
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
553 |
for analysis in analyses:
|
554 |
try:
|
|
|
|
|
|
|
|
|
|
|
555 |
# Formatear fecha
|
556 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
557 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
|
|
|
|
|
|
|
|
558 |
|
559 |
+
# Título del expander
|
560 |
expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
561 |
|
562 |
with st.expander(expander_title, expanded=False):
|
563 |
+
# Mostrar conceptos clave en dos columnas
|
564 |
+
if 'key_concepts1' in analysis and 'key_concepts2' in analysis:
|
565 |
+
col1, col2 = st.columns(2)
|
566 |
+
|
567 |
+
with col1:
|
568 |
+
st.subheader(t.get('concepts_text_1', 'Conceptos Texto 1'))
|
569 |
+
if analysis['key_concepts1']:
|
570 |
+
df1 = pd.DataFrame(analysis['key_concepts1'], columns=['Concepto', 'Relevancia'])
|
571 |
+
st.dataframe(df1, use_container_width=True)
|
572 |
+
|
573 |
+
with col2:
|
574 |
+
st.subheader(t.get('concepts_text_2', 'Conceptos Texto 2'))
|
575 |
+
if analysis['key_concepts2']:
|
576 |
+
df2 = pd.DataFrame(analysis['key_concepts2'], columns=['Concepto', 'Relevancia'])
|
577 |
+
st.dataframe(df2, use_container_width=True)
|
578 |
|
579 |
+
# Mostrar visualizaciones semánticas
|
580 |
+
st.subheader(t.get('semantic_visualization', 'Visualización Semántica'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
|
582 |
+
# Mostrar gráficos en fila
|
583 |
+
graph_cols = st.columns(3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
|
585 |
+
# Gráfico 1 (si existe)
|
586 |
+
with graph_cols[0]:
|
587 |
+
if analysis.get('graph1'):
|
|
|
|
|
588 |
try:
|
589 |
+
st.caption(t.get('graph1_caption', 'Grafo Texto 1'))
|
590 |
+
if isinstance(analysis['graph1'], str) and analysis['graph1'].startswith('data:image'):
|
591 |
+
import base64
|
592 |
+
image_bytes = base64.b64decode(analysis['graph1'].split(',')[1])
|
593 |
+
st.image(image_bytes, use_column_width=True)
|
594 |
+
elif isinstance(analysis['graph1'], bytes):
|
595 |
+
st.image(analysis['graph1'], use_column_width=True)
|
596 |
+
elif analysis['graph1'] is not None:
|
597 |
+
st.pyplot(analysis['graph1'])
|
598 |
+
except Exception as e:
|
599 |
+
logger.error(f"Error mostrando gráfico 1: {str(e)}")
|
600 |
+
st.error(t.get('error_graph1', 'Error mostrando gráfico 1'))
|
601 |
+
|
602 |
+
# Gráfico 2 (si existe)
|
603 |
+
with graph_cols[1]:
|
604 |
+
if analysis.get('graph2'):
|
605 |
+
try:
|
606 |
+
st.caption(t.get('graph2_caption', 'Grafo Texto 2'))
|
607 |
+
if isinstance(analysis['graph2'], str) and analysis['graph2'].startswith('data:image'):
|
608 |
+
import base64
|
609 |
+
image_bytes = base64.b64decode(analysis['graph2'].split(',')[1])
|
610 |
+
st.image(image_bytes, use_column_width=True)
|
611 |
+
elif isinstance(analysis['graph2'], bytes):
|
612 |
+
st.image(analysis['graph2'], use_column_width=True)
|
613 |
+
elif analysis['graph2'] is not None:
|
614 |
+
st.pyplot(analysis['graph2'])
|
615 |
+
except Exception as e:
|
616 |
+
logger.error(f"Error mostrando gráfico 2: {str(e)}")
|
617 |
+
st.error(t.get('error_graph2', 'Error mostrando gráfico 2'))
|
618 |
+
|
619 |
+
# Gráfico combinado (si existe) - en la última columna
|
620 |
+
with graph_cols[2]:
|
621 |
+
if analysis.get('combined_graph'):
|
622 |
+
try:
|
623 |
+
st.caption(t.get('combined_graph_caption', 'Grafo Comparativo'))
|
624 |
if isinstance(analysis['combined_graph'], str):
|
625 |
+
try:
|
|
|
626 |
import base64
|
627 |
+
# Intentar diferentes formatos de base64
|
628 |
+
if analysis['combined_graph'].startswith('data:image'):
|
629 |
+
image_bytes = base64.b64decode(analysis['combined_graph'].split(',')[1])
|
630 |
+
else:
|
|
|
631 |
image_bytes = base64.b64decode(analysis['combined_graph'])
|
632 |
+
st.image(image_bytes, use_column_width=True)
|
633 |
+
except:
|
634 |
+
logger.error("Error decodificando imagen combinada")
|
|
|
|
|
635 |
elif isinstance(analysis['combined_graph'], bytes):
|
|
|
636 |
st.image(analysis['combined_graph'], use_column_width=True)
|
637 |
+
elif analysis['combined_graph'] is not None:
|
|
|
638 |
st.pyplot(analysis['combined_graph'])
|
639 |
except Exception as e:
|
640 |
logger.error(f"Error mostrando gráfico combinado: {str(e)}")
|
641 |
+
st.error(t.get('error_combined_graph', 'Error mostrando gráfico combinado'))
|
642 |
+
|
643 |
+
# Si no hay ningún gráfico disponible
|
644 |
+
if all(analysis.get(k) is None for k in ['graph1', 'graph2', 'combined_graph']):
|
645 |
+
st.info(t.get('no_visualizations', 'No hay visualizaciones disponibles para este análisis'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
|
647 |
except Exception as e:
|
648 |
logger.error(f"Error procesando análisis individual: {str(e)}")
|
|
|
650 |
|
651 |
except Exception as e:
|
652 |
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
|
|
653 |
st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos'))
|
654 |
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
|
660 |
+
|
661 |
#################################################################################
|
662 |
def display_chat_activities(username: str, t: dict):
|
663 |
"""
|