diff --git a/modules/__init__.py b/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1db3f94715b2c4a3c06643e94b99ca5665833fa2 --- /dev/null +++ b/modules/__init__.py @@ -0,0 +1,319 @@ +# modules/__init__.py + +def load_auth_functions(): + from .auth.auth import authenticate_student, register_student, update_student_info, delete_student + return { + 'authenticate_student': authenticate_student, + 'register_student': register_student, + 'update_student_info': update_student_info, + 'delete_student': delete_student + } + +# Agregar nuevo import para current_situation +def load_current_situation_functions(): + """ + Carga las funciones relacionadas con el análisis de situación actual. + Returns: + dict: Diccionario con las funciones de situación actual + """ + from .studentact.current_situation_interface import ( + display_current_situation_interface, + display_metrics_in_one_row, + display_empty_metrics_row, + display_metrics_analysis, + display_comparison_results, + display_metrics_and_suggestions, + display_radar_chart, + suggest_improvement_tools, + prepare_metrics_config + ) + + from .studentact.current_situation_analysis import ( + correlate_metrics, + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap + ) + + return { + 'display_current_situation_interface': display_current_situation_interface, + 'display_metrics_in_one_row': display_metrics_in_one_line, + 'display_empty_metrics_row': display_empty_metrics_row, + 'display_metrics_analysis': display_metrics_analysis, + 'display_comparison_results': display_comparison_results, + 'display_metrics_and_suggestions': display_metrics_and_suggestions, + 'display_radar_chart': display_radar_chart, + 'suggest_improvement_tools': suggest_improvement_tools, + 'prepare_metrics_config': prepare_metrics_config, + 'display_empty_metrics_row' : display_empty_metrics_row, + 'correlate_metrics': correlate_metrics, + 'analyze_text_dimensions': analyze_text_dimensions, + 'analyze_clarity': analyze_clarity, + 'analyze_vocabulary_diversity': analyze_vocabulary_diversity, + 'analyze_cohesion': analyze_cohesion, + 'analyze_structure': analyze_structure, + 'get_dependency_depths': get_dependency_depths, + 'normalize_score': normalize_score, + 'generate_sentence_graphs': generate_sentence_graphs, + 'generate_word_connections': generate_word_connections, + 'generate_connection_paths': generate_connection_paths, + 'create_vocabulary_network': create_vocabulary_network, + 'create_syntax_complexity_graph': create_syntax_complexity_graph, + 'create_cohesion_heatmap': create_cohesion_heatmap + } + +def load_database_functions(): + + from .database.database_init import ( + initialize_database_connections, + get_container, + get_mongodb + ) + + # Importar funciones SQL + from .database.sql_db import ( + create_student_user, + get_student_user, + update_student_user, + delete_student_user, + store_application_request, + store_student_feedback, + record_login, + record_logout, + get_recent_sessions, + get_user_total_time + ) + + from .database.mongo_db import ( + get_collection, + insert_document, + find_documents, + update_document, + delete_document, + ) + + from .database.morphosintax_mongo_db import ( + store_student_morphosyntax_result, + get_student_morphosyntax_analysis, + update_student_morphosyntax_analysis, + delete_student_morphosyntax_analysis, + get_student_morphosyntax_data + ) + + from .database.semantic_mongo_db import ( + store_student_semantic_result, + get_student_semantic_analysis, + update_student_semantic_analysis, + delete_student_semantic_analysis, + get_student_semantic_data + ) + + from .database.discourse_mongo_db import ( + store_student_discourse_result, + get_student_discourse_analysis, + update_student_discourse_analysis, + delete_student_discourse_analysis, + get_student_discourse_data + ) + + # Agregar nueva importación para current_situation + from .database.current_situation_mongo_db import ( + store_current_situation_result, + verify_storage, + get_recent_sessions, + get_student_situation_history, + update_exercise_status + ) + + # Importar nuevas funciones de análisis morfosintáctico iterativo + from .morphosyntax_iterative_mongo_db import ( + store_student_morphosyntax_base, + store_student_morphosyntax_iteration, + get_student_morphosyntax_analysis, + update_student_morphosyntax_analysis, + delete_student_morphosyntax_analysis, + get_student_morphosyntax_data + ) + + from .database.chat_mongo_db import store_chat_history, get_chat_history + + return { + # Nuevas funciones morfosintácticas iterativas + 'store_student_morphosyntax_base': store_student_morphosyntax_base, + 'store_student_morphosyntax_iteration': store_student_morphosyntax_iteration, + 'get_student_morphosyntax_iterative_analysis': get_student_morphosyntax_analysis, # Renombrada para evitar conflicto + 'update_student_morphosyntax_iterative': update_student_morphosyntax_analysis, # Renombrada para evitar conflicto + 'delete_student_morphosyntax_iterative': delete_student_morphosyntax_analysis, # Renombrada para evitar conflicto + 'get_student_morphosyntax_iterative_data': get_student_morphosyntax_data, + 'store_current_situation_result': store_current_situation_result, + 'verify_storage': verify_storage, + 'get_recent_sessions': get_recent_sessions, + 'get_student_situation_history': get_student_situation_history, + 'update_exercise_status': update_exercise_status, + 'initialize_database_connections': initialize_database_connections, + 'get_container': get_container, + 'get_mongodb': get_mongodb, + 'create_student_user': create_student_user, + 'get_student_user': get_student_user, + 'update_student_user': update_student_user, + 'delete_student_user': delete_student_user, + 'store_application_request': store_application_request, + 'store_student_feedback': store_student_feedback, + 'get_collection': get_collection, + 'insert_document': insert_document, + 'find_documents': find_documents, + 'update_document': update_document, + 'delete_document': delete_document, + 'store_student_morphosyntax_result': store_student_morphosyntax_result, + 'get_student_morphosyntax_analysis': get_student_morphosyntax_analysis, + 'update_student_morphosyntax_analysis': update_student_morphosyntax_analysis, + 'delete_student_morphosyntax_analysis': delete_student_morphosyntax_analysis, + 'get_student_morphosyntax_data': get_student_morphosyntax_data, + 'store_student_semantic_result': store_student_semantic_result, + 'get_student_semantic_analysis': get_student_semantic_analysis, + 'update_student_semantic_analysis': update_student_semantic_analysis, + 'delete_student_semantic_analysis': delete_student_semantic_analysis, + 'get_student_semantic_data': get_student_semantic_data, + 'store_chat_history': store_chat_history, + 'get_chat_history': get_chat_history, + 'store_student_discourse_result': store_student_discourse_result, + 'get_student_discourse_analysis': get_student_discourse_analysis, + 'update_student_discourse_analysis': update_student_discourse_analysis, + 'delete_student_discourse_analysis': delete_student_discourse_analysis, + 'get_student_discourse_data': get_student_discourse_data, + 'record_login': record_login, + 'record_logout': record_logout, + 'get_recent_sessions': get_recent_sessions, + 'get_user_total_time': get_user_total_time + } + +def load_ui_functions(): + # No importamos nada de ui.py aquí + return {} # Retornamos un diccionario vacío + +def load_student_activities_v2_functions(): + from .studentact.student_activities_v2 import display_student_activities + return { + 'display_student_progress': display_student_activities + } + +def load_morphosyntax_functions(): + from .morphosyntax.morphosyntax_interface import ( + initialize_arc_analysis_state, + reset_arc_analysis_state, + display_arc_diagrams, + display_morphosyntax_results + ) + from .morphosyntax.morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis # Añadir esta función + ) + + return { + #Interface + 'initialize_arc_analysis_state': initialize_arc_analysis_state, + 'reset_arc_analysis_state': reset_morpho_state, + 'display_arc_diagrams': display_arc_diagrams, + 'display_morphosyntax_interface': display_morphosyntax_interface, + #Process + 'process_morphosyntactic_input': process_morphosyntactic_input, + 'format_analysis_results': format_analysis_results, + 'perform_advanced_morphosyntactic_analysis': perform_advanced_morphosyntactic_analysis + } + +def load_semantic_functions(): + from .semantic.semantic_interface import ( + display_semantic_interface, + display_semantic_results + ) + from modules.semantic.semantic_process import ( + process_semantic_input, + format_semantic_results + ) + + return { + 'display_semantic_interface': display_semantic_interface, + 'display_semantic_results': display_semantic_results, + 'process_semantic_input': process_semantic_input, + 'format_semantic_results': format_analysis_results, + } + + +def load_discourse_functions(): + from .discourse.discourse_interface import ( + display_discourse_interface, + display_discourse_results + ) + from modules.discourse.discourse_process import ( + perform_discourse_analysis, # Este es el nombre correcto de la función + extract_key_concepts, # Función adicional que necesitamos + generate_concept_graph, # Función adicional que necesitamos + calculate_similarity_matrix # Función adicional que necesitamos + ) + + return { + 'display_discourse_interface': display_discourse_interface, + 'display_discourse_results': display_discourse_results, + 'perform_discourse_analysis': perform_discourse_analysis, + 'extract_key_concepts': extract_key_concepts, + 'generate_concept_graph': generate_concept_graph, + 'calculate_similarity_matrix': calculate_similarity_matrix + } + +def load_admin_functions(): + from .admin.admin_ui import admin_page + return { + 'admin_page': admin_page + } + +def load_utils_functions(): + from .utils.spacy_utils import load_spacy_models + return { + 'load_spacy_models': load_spacy_models + } + +def load_chatbot_functions(): + """ + Carga las funciones del módulo de chatbot + Returns: + dict: Diccionario con las funciones del chatbot + """ + from modules.chatbot.sidebar_chat import ( + display_sidebar_chat + ) + + from modules.chatbot.chat_process import ( + ChatProcessor + ) + + return { + 'display_sidebar_chat': display_sidebar_chat, + 'ChatProcessor': ChatProcessor + } + +# Función para cargar todas las funciones +def load_all_functions(): + return { + **load_auth_functions(), + **load_database_functions(), + # **load_ui_functions(), + **load_admin_functions(), + **load_morphosyntax_functions(), + **load_semantic_functions(), + **load_discourse_functions(), + **load_utils_functions(), + **load_chatbot_functions(), + **load_student_activities_functions(), + **load_current_situation_functions() # Agregar el nuevo loader + } \ No newline at end of file diff --git a/modules/admin/__init__.py b/modules/admin/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/admin/__pycache__/__init__.cpython-311.pyc b/modules/admin/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c85a269ce514c4d46d29580339e5334a1427c78b Binary files /dev/null and b/modules/admin/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/admin/__pycache__/admin_ui.cpython-311.pyc b/modules/admin/__pycache__/admin_ui.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9018961cead54e46dca27fb2a40711f30e7b4532 Binary files /dev/null and b/modules/admin/__pycache__/admin_ui.cpython-311.pyc differ diff --git a/modules/admin/admin_ui.py b/modules/admin/admin_ui.py new file mode 100644 index 0000000000000000000000000000000000000000..d924338fdf4710b7bf507681023c831922246c37 --- /dev/null +++ b/modules/admin/admin_ui.py @@ -0,0 +1,252 @@ +#modules/admin/admin_ui.py + +import streamlit as st + +from datetime import datetime + +from ..database.sql_db import ( + get_user, + get_student_user, + get_admin_user, + get_teacher_user, + create_student_user, + update_student_user, + delete_student_user, + record_login, + record_logout, + get_recent_sessions, + get_user_total_time +) + +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis + +from ..auth.auth import hash_password # Agregar esta importación al inicio + +######################################################## +def format_duration(seconds): + """Convierte segundos a formato legible""" + if not seconds: + return "0h 0m" + hours = seconds // 3600 + minutes = (seconds % 3600) // 60 + return f"{hours}h {minutes}m" + + + +######################################################## +def admin_page(): + st.title("Panel de Administración") + st.write(f"Bienvenido, {st.session_state.username}") + + # Crear tres tabs para las diferentes secciones + tab1, tab2, tab3 = st.tabs([ + "Gestión de Usuarios", + "Búsqueda de Usuarios", + "Actividad de la Plataforma" + ]) + + +######################################################## + # Tab 1: Gestión de Usuarios + with tab1: + st.header("Crear Nuevo Usuario Estudiante") + + # Crear dos columnas para el formulario + col1, col2 = st.columns(2) + + with col1: + new_username = st.text_input( + "Correo electrónico del nuevo usuario", + key="admin_new_username" + ) + + with col2: + new_password = st.text_input( + "Contraseña", + type="password", + key="admin_new_password" + ) + + if st.button("Crear Usuario", key="admin_create_user", type="primary"): + if new_username and new_password: # Verificamos que ambos campos tengan valor + try: + # Hashear la contraseña antes de crear el usuario + hashed_password = hash_password(new_password) + if create_student_user(new_username, hashed_password, {'partitionKey': new_username}): + st.success(f"Usuario estudiante {new_username} creado exitosamente") + else: + st.error("Error al crear el usuario estudiante") + except Exception as e: + st.error(f"Error al crear usuario: {str(e)}") + else: + st.warning("Por favor complete todos los campos") + +####################################################################### + # Tab 2: Búsqueda de Usuarios + with tab2: + st.header("Búsqueda de Usuarios") + + search_col1, search_col2 = st.columns([2,1]) + + with search_col1: + student_username = st.text_input( + "Nombre de usuario del estudiante", + key="admin_view_student" + ) + + with search_col2: + search_button = st.button( + "Buscar", + key="admin_view_student_data", + type="primary" + ) + + if search_button: + student = get_student_user(student_username) + if student: + # Crear tabs para diferentes tipos de información + info_tab1, info_tab2, info_tab3 = st.tabs([ + "Información Básica", + "Análisis Realizados", + "Tiempo en Plataforma" + ]) + + with info_tab1: + st.subheader("Información del Usuario") + st.json(student) + + with info_tab2: + st.subheader("Análisis Realizados") + student_data = get_student_morphosyntax_analysis(student_username) + if student_data: + st.json(student_data) + else: + st.info("No hay datos de análisis para este estudiante.") + + with info_tab3: + st.subheader("Tiempo en Plataforma") + total_time = get_user_total_time(student_username) + if total_time: + st.metric( + "Tiempo Total", + format_duration(total_time) + ) + else: + st.info("No hay registros de tiempo para este usuario") + else: + st.error("Estudiante no encontrado") + +####################################################################### +# Tab 3: Actividad de la Plataforma + with tab3: + st.header("Actividad Reciente") + + # Agregar botón de actualización + if st.button("Actualizar datos", key="refresh_sessions", type="primary"): + st.rerun() + + # Mostrar spinner mientras carga + with st.spinner("Cargando datos de sesiones..."): + # Obtener sesiones recientes + recent_sessions = get_recent_sessions(20) # Aumentado a 20 para más datos + + if recent_sessions: + # Crear dataframe para mostrar los datos + sessions_data = [] + for session in recent_sessions: + try: + # Manejar el formato de fecha con manejo de excepciones + try: + login_time = datetime.fromisoformat( + session['loginTime'].replace('Z', '+00:00') + ).strftime("%Y-%m-%d %H:%M:%S") + except Exception as e: + login_time = session['loginTime'] + + # Manejar el caso de logout_time cuando la sesión está activa + if session.get('logoutTime') and session['logoutTime'] != "Activo": + try: + logout_time = datetime.fromisoformat( + session['logoutTime'].replace('Z', '+00:00') + ).strftime("%Y-%m-%d %H:%M:%S") + except Exception as e: + logout_time = session['logoutTime'] + else: + logout_time = "Activo" + + # Agregar datos a la lista + sessions_data.append({ + "Usuario": session.get('username', 'Desconocido'), + "Inicio de Sesión": login_time, + "Fin de Sesión": logout_time, + "Duración": format_duration(session.get('sessionDuration', 0)) + }) + except Exception as e: + st.error(f"Error procesando sesión: {str(e)}") + continue + + # Mostrar información de depuración si hay problemas + with st.expander("Información de depuración", expanded=False): + st.write("Datos crudos recuperados:") + st.json(recent_sessions) + + st.write("Datos procesados para mostrar:") + st.json(sessions_data) + + # Mostrar tabla con estilos + st.dataframe( + sessions_data, + hide_index=True, + column_config={ + "Usuario": st.column_config.TextColumn( + "Usuario", + width="medium" + ), + "Inicio de Sesión": st.column_config.TextColumn( + "Inicio de Sesión", + width="medium" + ), + "Fin de Sesión": st.column_config.TextColumn( + "Fin de Sesión", + width="medium" + ), + "Duración": st.column_config.TextColumn( + "Duración", + width="small" + ) + } + ) + + # Añadir métricas resumen + total_sessions = len(sessions_data) + total_users = len(set(session['Usuario'] for session in sessions_data)) + + metric_col1, metric_col2 = st.columns(2) + with metric_col1: + st.metric("Total de Sesiones", total_sessions) + with metric_col2: + st.metric("Usuarios Únicos", total_users) + else: + st.info("No hay registros de sesiones recientes o hubo un problema al recuperarlos.") + + # Ayuda de depuración + if st.button("Mostrar diagnóstico"): + st.write("Verificando la función get_recent_sessions:") + container = get_container("users_sessions") + if container: + st.success("✅ Conectado al contenedor users_sessions") + else: + st.error("❌ No se pudo conectar al contenedor users_sessions") + +################################################################## + # Agregar una línea divisoria antes del botón + st.markdown("---") + +################################################################## + # Centrar el botón de cierre de sesión + col1, col2, col3 = st.columns([2,1,2]) + with col2: + if st.button("Cerrar Sesión", key="admin_logout", type="primary", use_container_width=True): + from ..auth.auth import logout + logout() + st.rerun() \ No newline at end of file diff --git a/modules/admin/txt.txt b/modules/admin/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/chatbot/__init__.py b/modules/chatbot/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..171caa06980b2fbf804dc07ee3d7fce394a33f51 --- /dev/null +++ b/modules/chatbot/__init__.py @@ -0,0 +1,8 @@ +# modules/chatbot/__init__.py +from .sidebar_chat import display_sidebar_chat +from .chat_process import ChatProcessor + +__all__ = [ + 'display_sidebar_chat', + 'ChatProcessor' +] \ No newline at end of file diff --git a/modules/chatbot/__pycache__/__init__.cpython-311.pyc b/modules/chatbot/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4dee999ddc7986a005b9e892940625247d3274af Binary files /dev/null and b/modules/chatbot/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/chatbot/__pycache__/chatbot.cpython-311.pyc b/modules/chatbot/__pycache__/chatbot.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e61be251e2b0d7118e6e90e23676aa595a93ca6 Binary files /dev/null and b/modules/chatbot/__pycache__/chatbot.cpython-311.pyc differ diff --git a/modules/chatbot/chabot.py b/modules/chatbot/chabot.py new file mode 100644 index 0000000000000000000000000000000000000000..c1b9ce5264565c0b5c42760ed49e90c9b140862a --- /dev/null +++ b/modules/chatbot/chabot.py @@ -0,0 +1,60 @@ +# chatbot/chatbot.py +import streamlit as st +from typing import Dict, List, Tuple +import logging + +logger = logging.getLogger(__name__) + +class AIdeaTextChatbot: + def __init__(self, lang_code: str): + self.lang_code = lang_code + self.conversation_history = [] + self.context = { + 'current_analysis': None, + 'last_question': None, + 'user_profile': None + } + + def process_message(self, message: str, context: Dict = None) -> str: + """ + Procesa el mensaje del usuario y genera una respuesta + """ + try: + # Actualizar contexto + if context: + self.context.update(context) + + # Analizar intención del mensaje + intent = self._analyze_intent(message) + + # Generar respuesta basada en la intención + response = self._generate_response(intent, message) + + # Actualizar historial + self._update_history(message, response) + + return response + + except Exception as e: + logger.error(f"Error procesando mensaje: {str(e)}") + return self._get_fallback_response() + + def _analyze_intent(self, message: str) -> str: + """ + Analiza la intención del mensaje del usuario + """ + # Implementar análisis de intención + pass + + def _generate_response(self, intent: str, message: str) -> str: + """ + Genera una respuesta basada en la intención + """ + # Implementar generación de respuesta + pass + + def get_conversation_history(self) -> List[Tuple[str, str]]: + """ + Retorna el historial de conversación + """ + return self.conversation_history \ No newline at end of file diff --git a/modules/chatbot/chat_interface.py b/modules/chatbot/chat_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..0f998af5cee7f03c5cdcf410b9689f0222da07eb --- /dev/null +++ b/modules/chatbot/chat_interface.py @@ -0,0 +1,25 @@ +# chatbot/chat_interface.py +import streamlit as st +from .chatbot import AIdeaTextChatbot + +def display_chat_interface(lang_code: str, chat_translations: Dict): + """ + Muestra la interfaz del chat + """ + # Inicializar chatbot si no existe + if 'chatbot' not in st.session_state: + st.session_state.chatbot = AIdeaTextChatbot(lang_code) + + # Mostrar historial + for msg in st.session_state.chatbot.get_conversation_history(): + with st.chat_message(msg[0]): + st.write(msg[1]) + + # Input del usuario + if prompt := st.chat_input(chat_translations.get('chat_placeholder', 'Escribe tu mensaje...')): + # Procesar mensaje + response = st.session_state.chatbot.process_message(prompt) + + # Mostrar respuesta + with st.chat_message("assistant"): + st.write(response) \ No newline at end of file diff --git a/modules/chatbot/chat_process.py b/modules/chatbot/chat_process.py new file mode 100644 index 0000000000000000000000000000000000000000..a4095422943e241324b77e5acef1937b19c89c2e --- /dev/null +++ b/modules/chatbot/chat_process.py @@ -0,0 +1,56 @@ +# modules/chatbot/chat_process.py +import os +import anthropic +import logging +from typing import Dict, Generator + +logger = logging.getLogger(__name__) + +#################################################### +class ChatProcessor: + def __init__(self): + """Inicializa el procesador de chat con la API de Claude""" + api_key = os.environ.get("ANTHROPIC_API_KEY") + if not api_key: + raise ValueError("No se encontró la clave API de Anthropic. Asegúrate de configurarla en las variables de entorno.") + self.client = anthropic.Anthropic(api_key=api_key) + self.conversation_history = [] + + def process_chat_input(self, message: str, lang_code: str) -> Generator[str, None, None]: + """Procesa el mensaje y genera una respuesta""" + try: + # Agregar mensaje a la historia + self.conversation_history.append({"role": "user", "content": message}) + + # Generar respuesta usando la API de Claude + response = self.client.messages.create( + model="claude-3-5-sonnet-20241022", + messages=self.conversation_history, + max_tokens=8000, # Añadimos este parámetro requerido + temperature=0.7, + ) + + # Procesar la respuesta + claude_response = response.content[0].text + self.conversation_history.append({"role": "assistant", "content": claude_response}) + + # Mantener un historial limitado + if len(self.conversation_history) > 10: + self.conversation_history = self.conversation_history[-10:] + + # Dividir la respuesta en palabras para streaming + words = claude_response.split() + for word in words: + yield word + " " + + except Exception as e: + logger.error(f"Error en process_chat_input: {str(e)}") + yield f"Error: {str(e)}" + + def get_conversation_history(self) -> list: + """Retorna el historial de la conversación""" + return self.conversation_history + + def clear_history(self): + """Limpia el historial de la conversación""" + self.conversation_history = [] \ No newline at end of file diff --git a/modules/chatbot/chatbot-Old.py b/modules/chatbot/chatbot-Old.py new file mode 100644 index 0000000000000000000000000000000000000000..3e25b66c9473820add75e7dcedfe3c02326b543b --- /dev/null +++ b/modules/chatbot/chatbot-Old.py @@ -0,0 +1,46 @@ +import streamlit as st +from ..text_analysis.morpho_analysis import perform_advanced_morphosyntactic_analysis +from ..text_analysis.semantic_analysis import perform_semantic_analysis +from ..text_analysis.discourse_analysis import perform_discourse_analysis + +class AIdeaTextChatbot: + def __init__(self): + self.conversation_history = [] + + def handle_morphosyntactic_input(self, user_input, lang_code, nlp_models, t): + if user_input.startswith('/analisis_morfosintactico'): + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + if result is None or 'arc_diagrams' not in result: + return t.get('morphosyntactic_analysis_error', 'Error en el análisis morfosintáctico'), None, None + return t.get('morphosyntactic_analysis_completed', 'Análisis morfosintáctico completado'), result['arc_diagrams'], result + else: + # Aquí puedes manejar otras interacciones relacionadas con el análisis morfosintáctico + return self.generate_response(user_input, lang_code), None, None + + + def handle_semantic_input(self, user_input, lang_code, nlp_models, t): + # Implementar lógica para análisis semántico + pass + + def handle_discourse_input(self, user_input, lang_code, nlp_models, t): + # Implementar lógica para análisis de discurso + pass + + def handle_generate_response(self, prompt, lang_code): + # Aquí iría la lógica para generar respuestas generales del chatbot + # Puedes usar la API de Claude aquí si lo deseas + pass + +def initialize_chatbot(): + return AIdeaTextChatbot() + +def process_chat_input(user_input, lang_code, nlp_models, analysis_type, t, file_contents=None): + chatbot = st.session_state.get('aideatext_chatbot') + if not chatbot: + chatbot = initialize_chatbot() + st.session_state.aideatext_chatbot = chatbot + + if analysis_type == 'morphosyntactic': + return chatbot.handle_morphosyntactic_input(user_input, lang_code, nlp_models, t) + # ... manejar otros tipos de análisis ... \ No newline at end of file diff --git a/modules/chatbot/chatbot_open_Source_Model-test.py b/modules/chatbot/chatbot_open_Source_Model-test.py new file mode 100644 index 0000000000000000000000000000000000000000..63df12bc2dea0a7229e5934d961dffeb8f511ebb --- /dev/null +++ b/modules/chatbot/chatbot_open_Source_Model-test.py @@ -0,0 +1,124 @@ +from transformers import GPT2LMHeadModel, GPT2Tokenizer +import torch +from torch.optim import Adam +from torch.utils.data import DataLoader, Dataset +import json +import tqdm + +tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") +model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") + +class MultilingualChatData(Dataset): + def __init__(self, file_path, tokenizer, max_length=512): + with open(file_path, 'r', encoding='utf-8') as f: + self.data = json.load(f) + self.tokenizer = tokenizer + self.max_length = max_length + + def __len__(self): + return len(self.data) + + def __getitem__(self, idx): + item = self.data[idx] + input_text = f" {item['input']} : {item['output']} " + encoding = self.tokenizer(input_text, truncation=True, padding='max_length', max_length=self.max_length, return_tensors="pt") + return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze() + +class MultilingualChatbot: + def __init__(self): + self.models = { + 'en': GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium"), + 'es': GPT2LMHeadModel.from_pretrained("DeepESP/gpt2-spanish"), + 'fr': GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-small") + } + self.tokenizers = { + 'en': GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium"), + 'es': GPT2Tokenizer.from_pretrained("DeepESP/gpt2-spanish"), + 'fr': GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-small") + } + for tokenizer in self.tokenizers.values(): + tokenizer.pad_token = tokenizer.eos_token + tokenizer.add_special_tokens({ + "bos_token": "", + "eos_token": "" + }) + tokenizer.add_tokens([":"]) + + for model in self.models.values(): + model.resize_token_embeddings(len(self.tokenizers['en'])) # Assuming all tokenizers have the same vocabulary size + + self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" + for model in self.models.values(): + model.to(self.device) + + def train(self, lang, data_file, epochs=5, batch_size=32, learning_rate=1e-4): + model = self.models[lang] + tokenizer = self.tokenizers[lang] + + chat_data = MultilingualChatData(data_file, tokenizer) + data_loader = DataLoader(chat_data, batch_size=batch_size, shuffle=True) + + optimizer = Adam(model.parameters(), lr=learning_rate) + + model.train() + for epoch in range(epochs): + total_loss = 0 + for batch in tqdm.tqdm(data_loader, desc=f"Epoch {epoch+1}/{epochs}"): + input_ids, attention_mask = [b.to(self.device) for b in batch] + + optimizer.zero_grad() + outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) + loss = outputs.loss + loss.backward() + optimizer.step() + + total_loss += loss.item() + + print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(data_loader):.4f}") + + torch.save(model.state_dict(), f"model_state_{lang}.pt") + + def generate_response(self, prompt, src_lang): + model = self.models.get(src_lang, self.models['en']) + tokenizer = self.tokenizers.get(src_lang, self.tokenizers['en']) + + input_text = f" {prompt} : " + input_ids = tokenizer.encode(input_text, return_tensors='pt').to(self.device) + + attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=self.device) + + output = model.generate( + input_ids, + attention_mask=attention_mask, + max_length=1000, + pad_token_id=tokenizer.eos_token_id, + no_repeat_ngram_size=3, + do_sample=True, + top_k=50, + top_p=0.95, + temperature=0.7, + num_return_sequences=1, + length_penalty=1.0, + repetition_penalty=1.2 + ) + + decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) + return decoded_output.split(":")[-1].strip() + +def initialize_chatbot(): + return MultilingualChatbot() + +def get_chatbot_response(chatbot, prompt, src_lang): + return chatbot.generate_response(prompt, src_lang) + +# Ejemplo de uso +if __name__ == "__main__": + chatbot = initialize_chatbot() + + # Entrenar el modelo en español (asumiendo que tienes un archivo de datos en español) + chatbot.train('es', './spanish_chat_data.json', epochs=3) + + # Generar respuestas + print(get_chatbot_response(chatbot, "Hola, ¿cómo estás?", 'es')) + print(get_chatbot_response(chatbot, "Hello, how are you?", 'en')) + print(get_chatbot_response(chatbot, "Bonjour, comment allez-vous?", 'fr')) \ No newline at end of file diff --git a/modules/chatbot/sidebar_chat.py b/modules/chatbot/sidebar_chat.py new file mode 100644 index 0000000000000000000000000000000000000000..59ca36f7dab44aa124235016919d279a3756d6d9 --- /dev/null +++ b/modules/chatbot/sidebar_chat.py @@ -0,0 +1,113 @@ +# modules/chatbot/sidebar_chat.py +import streamlit as st +from .chat_process import ChatProcessor +from ..database.chat_mongo_db import store_chat_history, get_chat_history +import logging + +logger = logging.getLogger(__name__) + +def display_sidebar_chat(lang_code: str, chatbot_t: dict): + """ + Muestra el chatbot en el sidebar + Args: + lang_code: Código del idioma + chatbot_t: Diccionario de traducciones del chatbot + """ + # Asegurar que tenemos las traducciones necesarias + default_translations = { + 'error_message': 'An error occurred', + 'expand_chat': 'Open Assistant', + 'initial_message': 'Hi! How can I help?', + 'input_placeholder': 'Type your message...', + 'clear_chat': 'Clear chat' + } + + # Combinar traducciones por defecto con las proporcionadas + translations = {**default_translations, **chatbot_t} + + with st.sidebar: + # Chatbot expandible + with st.expander(translations['expand_chat'], expanded=False): + try: + # Inicializar procesador si no existe + if 'chat_processor' not in st.session_state: + try: + st.session_state.chat_processor = ChatProcessor() + except Exception as e: + logger.error(f"Error inicializando ChatProcessor: {str(e)}") + st.error("Error: No se pudo inicializar el chat. Verifica la configuración.") + return + + # Inicializar mensajes si no existen + if 'sidebar_messages' not in st.session_state: + # Intentar recuperar historial previo + try: + history = get_chat_history(st.session_state.username, 'sidebar', 10) + if history: + st.session_state.sidebar_messages = history[0]['messages'] + else: + st.session_state.sidebar_messages = [ + {"role": "assistant", "content": translations['initial_message']} + ] + except Exception as e: + logger.error(f"Error recuperando historial: {str(e)}") + st.session_state.sidebar_messages = [ + {"role": "assistant", "content": translations['initial_message']} + ] + + # Contenedor del chat + chat_container = st.container() + + # Mostrar mensajes existentes + with chat_container: + for message in st.session_state.sidebar_messages: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + # Input del usuario + user_input = st.text_input( + translations['input_placeholder'], + key='sidebar_chat_input' + ) + + if user_input: + # Agregar mensaje del usuario + st.session_state.sidebar_messages.append( + {"role": "user", "content": user_input} + ) + + # Generar y mostrar respuesta + with chat_container: + with st.chat_message("assistant"): + message_placeholder = st.empty() + full_response = "" + + for chunk in st.session_state.chat_processor.process_chat_input( + user_input, + lang_code + ): + full_response += chunk + message_placeholder.markdown(full_response) + + # Guardar respuesta + st.session_state.sidebar_messages.append( + {"role": "assistant", "content": full_response.strip()} + ) + + # En la función donde guardamos el chat + store_chat_history( + username=st.session_state.username, + messages=st.session_state.sidebar_messages, + analysis_type='sidebar' # Especificar el tipo + ) + + # Botón para limpiar chat + if st.button(translations['clear_chat']): + st.session_state.sidebar_messages = [ + {"role": "assistant", "content": translations['initial_message']} + ] + st.rerun() + + except Exception as e: + logger.error(f"Error en sidebar chat: {str(e)}") + st.error(translations['error_message']) \ No newline at end of file diff --git a/modules/chatbot/txt.txt b/modules/chatbot/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/discourse/__init__.py b/modules/discourse/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..06faa2f4a88284a241f0e9aa40d369e455cdf485 --- /dev/null +++ b/modules/discourse/__init__.py @@ -0,0 +1,17 @@ +# En /modules/discourse/__init__.py + +from ..database.discourse_mongo_db import ( + store_student_discourse_result, + get_student_discourse_analysis, + update_student_discourse_analysis, + delete_student_discourse_analysis, + get_student_discourse_data +) + +__all__ = [ + 'store_student_discourse_result', + 'get_student_discourse_analysis', + 'update_student_discourse_analysis', + 'delete_student_discourse_analysis', + 'get_student_discourse_data' +] \ No newline at end of file diff --git a/modules/discourse/__pycache__/__init__.cpython-311.pyc b/modules/discourse/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..531fc4d8fdd23ed8161f6e843ea0c74857a2b978 Binary files /dev/null and b/modules/discourse/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/discourse/__pycache__/discourse_interface.cpython-311.pyc b/modules/discourse/__pycache__/discourse_interface.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e24a65c99cd7c93a342fcf3dba20781483972e33 Binary files /dev/null and b/modules/discourse/__pycache__/discourse_interface.cpython-311.pyc differ diff --git a/modules/discourse/__pycache__/discourse_process.cpython-311.pyc b/modules/discourse/__pycache__/discourse_process.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ed76cf9b49d6541d349438ffe7fdbde63034234 Binary files /dev/null and b/modules/discourse/__pycache__/discourse_process.cpython-311.pyc differ diff --git a/modules/discourse/discourse_interface.py b/modules/discourse/discourse_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..388eb74bf74765999a84358ac99f6065972e2c1c --- /dev/null +++ b/modules/discourse/discourse_interface.py @@ -0,0 +1,281 @@ +# modules/discourse/discourse/discourse_interface.py + +import streamlit as st +import pandas as pd +import plotly.graph_objects as go +import logging +from ..utils.widget_utils import generate_unique_key +from .discourse_process import perform_discourse_analysis +from ..database.chat_mongo_db import store_chat_history +from ..database.discourse_mongo_db import store_student_discourse_result + +logger = logging.getLogger(__name__) + +def display_discourse_interface(lang_code, nlp_models, discourse_t): + """ + Interfaz para el análisis del discurso + Args: + lang_code: Código del idioma actual + nlp_models: Modelos de spaCy cargados + discourse_t: Diccionario de traducciones + """ + try: + # 1. Inicializar estado si no existe + if 'discourse_state' not in st.session_state: + st.session_state.discourse_state = { + 'analysis_count': 0, + 'last_analysis': None, + 'current_files': None + } + + # 2. Título y descripción + st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso')) + st.info(discourse_t.get('initial_instruction', + 'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.')) + + # 3. Área de carga de archivos + col1, col2 = st.columns(2) + with col1: + st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**")) + uploaded_file1 = st.file_uploader( + discourse_t.get('file_uploader1', "Cargar archivo 1"), + type=['txt'], + key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}" + ) + + with col2: + st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**")) + uploaded_file2 = st.file_uploader( + discourse_t.get('file_uploader2', "Cargar archivo 2"), + type=['txt'], + key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}" + ) + + # 4. Botón de análisis + col1, col2, col3 = st.columns([1,2,1]) + with col1: + analyze_button = st.button( + discourse_t.get('discourse_analyze_button', 'Analizar Discurso'), + key=generate_unique_key("discourse", "analyze_button"), + type="primary", + icon="🔍", + disabled=not (uploaded_file1 and uploaded_file2), + use_container_width=True + ) + + # 5. Proceso de análisis + if analyze_button and uploaded_file1 and uploaded_file2: + try: + with st.spinner(discourse_t.get('processing', 'Procesando análisis...')): + # Leer contenido de archivos + text1 = uploaded_file1.getvalue().decode('utf-8') + text2 = uploaded_file2.getvalue().decode('utf-8') + + # Realizar análisis + result = perform_discourse_analysis( + text1, + text2, + nlp_models[lang_code], + lang_code + ) + + if result['success']: + # Guardar estado + st.session_state.discourse_result = result + st.session_state.discourse_state['analysis_count'] += 1 + st.session_state.discourse_state['current_files'] = ( + uploaded_file1.name, + uploaded_file2.name + ) + + # Guardar en base de datos + if store_student_discourse_result( + st.session_state.username, + text1, + text2, + result + ): + st.success(discourse_t.get('success_message', 'Análisis guardado correctamente')) + + # Mostrar resultados + display_discourse_results(result, lang_code, discourse_t) + else: + st.error(discourse_t.get('error_message', 'Error al guardar el análisis')) + else: + st.error(discourse_t.get('analysis_error', 'Error en el análisis')) + + except Exception as e: + logger.error(f"Error en análisis del discurso: {str(e)}") + st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}')) + + # 6. Mostrar resultados previos + elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None: + if st.session_state.discourse_state.get('current_files'): + st.info( + discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}') + .format(*st.session_state.discourse_state['current_files']) + ) + display_discourse_results( + st.session_state.discourse_result, + lang_code, + discourse_t + ) + + except Exception as e: + logger.error(f"Error general en interfaz del discurso: {str(e)}") + st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.')) + + + +##################################################################################################################### + +def display_discourse_results(result, lang_code, discourse_t): + """ + Muestra los resultados del análisis del discurso + """ + if not result.get('success'): + st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) + return + + # Estilo CSS + st.markdown(""" + + """, unsafe_allow_html=True) + + col1, col2 = st.columns(2) + + # Documento 1 + with col1: + st.subheader(discourse_t.get('doc1_title', 'Documento 1')) + st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave')) + if 'key_concepts1' in result: + concepts_html = f""" +
+ {''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in result['key_concepts1'] + ])} +
+ """ + st.markdown(concepts_html, unsafe_allow_html=True) + + if 'graph1' in result: + st.markdown('
', unsafe_allow_html=True) + st.pyplot(result['graph1']) + + # Botones y controles + button_col1, spacer_col1 = st.columns([1,4]) + with button_col1: + if 'graph1_bytes' in result: + st.download_button( + label="📥 " + discourse_t.get('download_graph', "Download"), + data=result['graph1_bytes'], + file_name="discourse_graph1.png", + mime="image/png", + use_container_width=True + ) + + # Interpretación como texto normal sin expander + st.markdown("**📊 Interpretación del grafo:**") + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + + st.markdown('
', unsafe_allow_html=True) + else: + st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible')) + else: + st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) + + # Documento 2 + with col2: + st.subheader(discourse_t.get('doc2_title', 'Documento 2')) + st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave')) + if 'key_concepts2' in result: + concepts_html = f""" +
+ {''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in result['key_concepts2'] + ])} +
+ """ + st.markdown(concepts_html, unsafe_allow_html=True) + + if 'graph2' in result: + st.markdown('
', unsafe_allow_html=True) + st.pyplot(result['graph2']) + + # Botones y controles + button_col2, spacer_col2 = st.columns([1,4]) + with button_col2: + if 'graph2_bytes' in result: + st.download_button( + label="📥 " + discourse_t.get('download_graph', "Download"), + data=result['graph2_bytes'], + file_name="discourse_graph2.png", + mime="image/png", + use_container_width=True + ) + + # Interpretación como texto normal sin expander + st.markdown("**📊 Interpretación del grafo:**") + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + + st.markdown('
', unsafe_allow_html=True) + else: + st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible')) + else: + st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) + + # Nota informativa sobre la comparación + st.info(discourse_t.get('comparison_note', + 'La funcionalidad de comparación detallada estará disponible en una próxima actualización.')) \ No newline at end of file diff --git a/modules/discourse/discourse_live_interface.py b/modules/discourse/discourse_live_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..564c0dd216a73e3c924bd3a10264459fbb84c507 --- /dev/null +++ b/modules/discourse/discourse_live_interface.py @@ -0,0 +1,151 @@ +# modules/discourse/discourse/discourse_live_interface.py + +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +import pandas as pd +import logging +import io +import matplotlib.pyplot as plt + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .discourse_process import perform_discourse_analysis +from .discourse_interface import display_discourse_results # Añadida esta importación +from ..utils.widget_utils import generate_unique_key +from ..database.discourse_mongo_db import store_student_discourse_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + + +##################################################################################################### +def fig_to_bytes(fig): + """Convierte una figura de matplotlib a bytes.""" + try: + buf = io.BytesIO() + fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') + buf.seek(0) + return buf.getvalue() + except Exception as e: + logger.error(f"Error en fig_to_bytes: {str(e)}") + return None + +################################################################################################# +def display_discourse_live_interface(lang_code, nlp_models, discourse_t): + """ + Interfaz para el análisis del discurso en vivo con layout mejorado + """ + try: + if 'discourse_live_state' not in st.session_state: + st.session_state.discourse_live_state = { + 'analysis_count': 0, + 'current_text1': '', + 'current_text2': '', + 'last_result': None, + 'text_changed': False + } + + # Título + st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos')) + + # Área de entrada de textos en dos columnas + text_col1, text_col2 = st.columns(2) + + # Texto 1 + with text_col1: + st.markdown("**Texto 1 (Patrón)**") + text_input1 = st.text_area( + "Texto 1", + height=200, + key="discourse_live_text1", + value=st.session_state.discourse_live_state.get('current_text1', ''), + label_visibility="collapsed" + ) + st.session_state.discourse_live_state['current_text1'] = text_input1 + + # Texto 2 + with text_col2: + st.markdown("**Texto 2 (Comparación)**") + text_input2 = st.text_area( + "Texto 2", + height=200, + key="discourse_live_text2", + value=st.session_state.discourse_live_state.get('current_text2', ''), + label_visibility="collapsed" + ) + st.session_state.discourse_live_state['current_text2'] = text_input2 + + # Botón de análisis centrado + col1, col2, col3 = st.columns([1,2,1]) + with col1: + analyze_button = st.button( + discourse_t.get('analyze_button', 'Analizar'), + key="discourse_live_analyze", + type="primary", + icon="🔍", + disabled=not (text_input1 and text_input2), + use_container_width=True + ) + + # Proceso y visualización de resultados + if analyze_button and text_input1 and text_input2: + try: + with st.spinner(discourse_t.get('processing', 'Procesando...')): + result = perform_discourse_analysis( + text_input1, + text_input2, + nlp_models[lang_code], + lang_code + ) + + if result['success']: + # Procesar ambos gráficos + for graph_key in ['graph1', 'graph2']: + if graph_key in result and result[graph_key] is not None: + bytes_key = f'{graph_key}_bytes' + graph_bytes = fig_to_bytes(result[graph_key]) + if graph_bytes: + result[bytes_key] = graph_bytes + plt.close(result[graph_key]) + + st.session_state.discourse_live_state['last_result'] = result + st.session_state.discourse_live_state['analysis_count'] += 1 + + store_student_discourse_result( + st.session_state.username, + text_input1, + text_input2, + result + ) + + # Mostrar resultados + st.markdown("---") + st.subheader(discourse_t.get('results_title', 'Resultados del Análisis')) + display_discourse_results(result, lang_code, discourse_t) + + else: + st.error(result.get('message', 'Error en el análisis')) + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}')) + + # Mostrar resultados previos si existen + elif 'last_result' in st.session_state.discourse_live_state and \ + st.session_state.discourse_live_state['last_result'] is not None: + + st.markdown("---") + st.subheader(discourse_t.get('previous_results', 'Resultados del Análisis Anterior')) + display_discourse_results( + st.session_state.discourse_live_state['last_result'], + lang_code, + discourse_t + ) + + except Exception as e: + logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}") + st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + + + diff --git a/modules/discourse/discourse_process.py b/modules/discourse/discourse_process.py new file mode 100644 index 0000000000000000000000000000000000000000..b9379e77331b3d300ad21e53cac26098a039a754 --- /dev/null +++ b/modules/discourse/discourse_process.py @@ -0,0 +1,68 @@ +from ..text_analysis.discourse_analysis import perform_discourse_analysis, compare_semantic_analysis +import streamlit as st + +def process_discourse_input(text1, text2, nlp_models, lang_code): + """ + Procesa la entrada para el análisis del discurso + Args: + text1: Texto del primer documento + text2: Texto del segundo documento + nlp_models: Diccionario de modelos de spaCy + lang_code: Código del idioma actual + Returns: + dict: Resultados del análisis + """ + try: + # Obtener el modelo específico del idioma + nlp = nlp_models[lang_code] + + # Realizar el análisis + analysis_result = perform_discourse_analysis(text1, text2, nlp, lang_code) + + if analysis_result['success']: + return { + 'success': True, + 'analysis': analysis_result + } + else: + return { + 'success': False, + 'error': 'Error en el análisis del discurso' + } + + except Exception as e: + logger.error(f"Error en process_discourse_input: {str(e)}") + return { + 'success': False, + 'error': str(e) + } + +def format_discourse_results(result): + """ + Formatea los resultados del análisis para su visualización + Args: + result: Resultado del análisis + Returns: + dict: Resultados formateados + """ + try: + if not result['success']: + return result + + analysis = result['analysis'] + return { + 'success': True, + 'graph1': analysis['graph1'], + 'graph2': analysis['graph2'], + 'key_concepts1': analysis['key_concepts1'], + 'key_concepts2': analysis['key_concepts2'], + 'table1': analysis['table1'], + 'table2': analysis['table2'] + } + + except Exception as e: + logger.error(f"Error en format_discourse_results: {str(e)}") + return { + 'success': False, + 'error': str(e) + } \ No newline at end of file diff --git a/modules/email/__init__.py b/modules/email/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/email/__pycache__/__init__.cpython-311.pyc b/modules/email/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..decd2af6d410fe2fb58d2694805363eb73aacd9d Binary files /dev/null and b/modules/email/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/email/__pycache__/email.cpython-311.pyc b/modules/email/__pycache__/email.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..766c7c57fb026d6b10afe9262588d1facb6b17e4 Binary files /dev/null and b/modules/email/__pycache__/email.cpython-311.pyc differ diff --git a/modules/email/email.py b/modules/email/email.py new file mode 100644 index 0000000000000000000000000000000000000000..878d5c53b1c1c31a51c2d7ec3bb7710784855861 --- /dev/null +++ b/modules/email/email.py @@ -0,0 +1,92 @@ +import smtplib +from email.mime.text import MIMEText +from email.mime.multipart import MIMEMultipart +import os + +def send_email_notification(name, email, institution, role, reason): + sender_email = "noreply@aideatext.ai" # Configura esto con tu dirección de correo + receiver_email = "hello@aideatext.ai" + password = os.environ.get("NOREPLY_EMAIL_PASSWORD") # Configura esto en tus variables de entorno + + message = MIMEMultipart("alternative") + message["Subject"] = "Nueva solicitud de prueba de AIdeaText" + message["From"] = sender_email + message["To"] = receiver_email + + text = f"""\ + Nueva solicitud de prueba de AIdeaText: + Nombre: {name} + Email: {email} + Institución: {institution} + Rol: {role} + Razón: {reason} + """ + + html = f"""\ + + +

Nueva solicitud de prueba de AIdeaText

+

Nombre: {name}

+

Email: {email}

+

Institución: {institution}

+

Rol: {role}

+

Razón: {reason}

+ + + """ + + part1 = MIMEText(text, "plain") + part2 = MIMEText(html, "html") + + message.attach(part1) + message.attach(part2) + + try: + with smtplib.SMTP_SSL("smtp.titan.email", 465) as server: + logger.info("Conectado al servidor SMTP") + server.login(sender_email, password) + logger.info("Inicio de sesión exitoso") + server.sendmail(sender_email, receiver_email, message.as_string()) + logger.info(f"Correo enviado de {sender_email} a {receiver_email}") + logger.info(f"Email notification sent for application request: {email}") + return True + except Exception as e: + logger.error(f"Error sending email notification: {str(e)}") + return False + +def send_user_feedback_notification(name, email, feedback): + sender_email = "noreply@aideatext.ai" + receiver_email = "feedback@aideatext.ai" # Cambia esto a la dirección que desees + password = os.environ.get("NOREPLY_EMAIL_PASSWORD") + + message = MIMEMultipart("alternative") + message["Subject"] = "Nuevo comentario de usuario en AIdeaText" + message["From"] = sender_email + message["To"] = receiver_email + + html = f"""\ + + +

Nuevo comentario de usuario en AIdeaText

+

Nombre: {name}

+

Email: {email}

+

Comentario: {feedback}

+ + + """ + + part = MIMEText(html, "html") + message.attach(part) + + try: + with smtplib.SMTP_SSL("smtp.titan.email", 465) as server: + logger.info("Conectado al servidor SMTP") + server.login(sender_email, password) + logger.info("Inicio de sesión exitoso") + server.sendmail(sender_email, receiver_email, message.as_string()) + logger.info(f"Correo enviado de {sender_email} a {receiver_email}") + logger.info(f"Email notification sent for user feedback from: {email}") + return True + except Exception as e: + logger.error(f"Error sending user feedback email notification: {str(e)}") + return False \ No newline at end of file diff --git a/modules/email/txt.txt b/modules/email/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/morphosyntax/__init__.py b/modules/morphosyntax/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b1da8c211b7315325f058baa1f599e8ccb01f15f --- /dev/null +++ b/modules/morphosyntax/__init__.py @@ -0,0 +1,29 @@ +from .morphosyntax_interface import ( + display_morphosyntax_interface, + display_arc_diagram + # display_morphosyntax_results +) + +from .morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis, + get_repeated_words_colors, + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS +) + +__all__ = [ + 'display_morphosyntax_interface', + 'display_arc_diagram', + #'display_morphosyntax_results', + 'process_morphosyntactic_input', + 'format_analysis_results', + 'perform_advanced_morphosyntactic_analysis', + 'get_repeated_words_colors', + 'highlight_repeated_words', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] + diff --git a/modules/morphosyntax/__pycache__/__init__.cpython-311.pyc b/modules/morphosyntax/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d1de440bb8567809c523502b8eb53e8cbc879140 Binary files /dev/null and b/modules/morphosyntax/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/morphosyntax/__pycache__/morphosyntax_interface.cpython-311.pyc b/modules/morphosyntax/__pycache__/morphosyntax_interface.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31626a87d30b5ef698ab28d4e18280c2ab3b2878 Binary files /dev/null and b/modules/morphosyntax/__pycache__/morphosyntax_interface.cpython-311.pyc differ diff --git a/modules/morphosyntax/__pycache__/morphosyntax_process.cpython-311.pyc b/modules/morphosyntax/__pycache__/morphosyntax_process.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46b24c65f61758eaa702d506363ec7f9d05ceeaa Binary files /dev/null and b/modules/morphosyntax/__pycache__/morphosyntax_process.cpython-311.pyc differ diff --git a/modules/morphosyntax/morphosyntax_interface-Back1910-25-9-24.py b/modules/morphosyntax/morphosyntax_interface-Back1910-25-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..e8bb9d5dda50e6e595246de2a292bf0e3fa4536d --- /dev/null +++ b/modules/morphosyntax/morphosyntax_interface-Back1910-25-9-24.py @@ -0,0 +1,171 @@ +#modules/morphosyntax/morphosyntax_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import base64 +from .morphosyntax_process import process_morphosyntactic_input +from ..chatbot.chatbot import initialize_chatbot +from ..utils.widget_utils import generate_unique_key +from ..database.database_oldFromV2 import store_morphosyntax_result + +import logging +logger = logging.getLogger(__name__) + + +####################### VERSION ANTERIOR A LAS 20:00 24-9-24 + +def display_morphosyntax_interface(lang_code, nlp_models, t): + # Estilo CSS personalizado + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['morpho_initial_message']} +
+ """, unsafe_allow_html=True) + + # Inicializar el chatbot si no existe + if 'morphosyntax_chatbot' not in st.session_state: + st.session_state.morphosyntax_chatbot = initialize_chatbot('morphosyntactic') + + # Crear un contenedor para el chat + chat_container = st.container() + + # Mostrar el historial del chat + with chat_container: + if 'morphosyntax_chat_history' not in st.session_state: + st.session_state.morphosyntax_chat_history = [] + for i, message in enumerate(st.session_state.morphosyntax_chat_history): + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualizations" in message: + for viz in message["visualizations"]: + st.components.v1.html( + f""" +
+
+ {viz} +
+
+ """, + height=370, + scrolling=True + ) + + + # Input del usuario + user_input = st.chat_input( + t['morpho_input_label'], + key=generate_unique_key('morphosyntax', "chat_input") + ) + + if user_input: + # Añadir el mensaje del usuario al historial + st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) + + # Mostrar indicador de carga + with st.spinner(t.get('processing', 'Processing...')): + try: + # Procesar el input del usuario + response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) + + # Añadir la respuesta al historial + message = { + "role": "assistant", + "content": response + } + if visualizations: + message["visualizations"] = visualizations + st.session_state.morphosyntax_chat_history.append(message) + + # Mostrar la respuesta más reciente + with st.chat_message("assistant"): + st.write(response) + if visualizations: + for i, viz in enumerate(visualizations): + st.components.v1.html( + f""" +
+
+ {viz} +
+
+ """, + height=350, + scrolling=True + ) + + # Si es un análisis, guardarlo en la base de datos + if user_input.startswith('/analisis_morfosintactico') and result: + store_morphosyntax_result( + st.session_state.username, + user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado + result.get('repeated_words', {}), + visualizations, + result.get('pos_analysis', []), + result.get('morphological_analysis', []), + result.get('sentence_structure', []) + ) + + except Exception as e: + st.error(f"{t['error_processing']}: {str(e)}") + + # Si es un análisis, guardarlo en la base de datos + if user_input.startswith('/analisis_morfosintactico') and result: + store_morphosyntax_result( + st.session_state.username, + user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado + result['repeated_words'], + visualizations, # Ahora pasamos todas las visualizaciones + result['pos_analysis'], + result['morphological_analysis'], + result['sentence_structure'] + ) + + # Forzar la actualización de la interfaz + st.rerun() + + # Botón para limpiar el historial del chat + if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): + st.session_state.morphosyntax_chat_history = [] + st.rerun() + + + +''' +############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### +def display_morphosyntax_interface(lang_code, nlp_models, t): + st.subheader(t['morpho_title']) + + text_input = st.text_area( + t['warning_message'], + height=150, + key=generate_unique_key("morphosyntax", "text_area") + ) + + if st.button( + t['results_title'], + key=generate_unique_key("morphosyntax", "analyze_button") + ): + if text_input: + # Aquí iría tu lógica de análisis morfosintáctico + # Por ahora, solo mostraremos un mensaje de placeholder + st.info(t['analysis_placeholder']) + else: + st.warning(t['no_text_warning']) +### +################################################# +''' diff --git a/modules/morphosyntax/morphosyntax_interface-BackUp_Dec24_OK.py b/modules/morphosyntax/morphosyntax_interface-BackUp_Dec24_OK.py new file mode 100644 index 0000000000000000000000000000000000000000..490e5ed0e2ad0652d432e79d31e4a05236b4f2f1 --- /dev/null +++ b/modules/morphosyntax/morphosyntax_interface-BackUp_Dec24_OK.py @@ -0,0 +1,322 @@ +#modules/morphosyntax/morphosyntax_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy +from spacy import displacy +import spacy_streamlit +import pandas as pd +import base64 +import re + +# Importar desde morphosyntax_process.py +from .morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis, # Añadir esta importación + get_repeated_words_colors, # Y estas también + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..utils.widget_utils import generate_unique_key + +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +# from ..database.morphosintaxis_export import export_user_interactions + +import logging +logger = logging.getLogger(__name__) + +############################################################################################################ +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + try: + # 1. Inicializar el estado morfosintáctico si no existe + if 'morphosyntax_state' not in st.session_state: + st.session_state.morphosyntax_state = { + 'input_text': "", + 'analysis_count': 0, + 'last_analysis': None + } + + # 2. Campo de entrada de texto con key única basada en el contador + input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}" + + sentence_input = st.text_area( + morpho_t.get('morpho_input_label', 'Enter text to analyze'), + height=150, + placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), + key=input_key + ) + + # 3. Actualizar el estado con el texto actual + st.session_state.morphosyntax_state['input_text'] = sentence_input + + # 4. Crear columnas para el botón + col1, col2, col3 = st.columns([2,1,2]) + + # 5. Botón de análisis en la columna central + with col1: + analyze_button = st.button( + morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), + key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", + type="primary", # Nuevo en Streamlit 1.39.0 + icon="🔍", # Nuevo en Streamlit 1.39.0 + disabled=not bool(sentence_input.strip()), # Se activa solo cuando hay texto + use_container_width=True + ) + + # 6. Lógica de análisis + if analyze_button and sentence_input.strip(): # Verificar que haya texto y no solo espacios + try: + with st.spinner(morpho_t.get('processing', 'Processing...')): + # Obtener el modelo específico del idioma y procesar el texto + doc = nlp_models[lang_code](sentence_input) + + # Realizar análisis morfosintáctico con el mismo modelo + advanced_analysis = perform_advanced_morphosyntactic_analysis( + sentence_input, + nlp_models[lang_code] + ) + + # Guardar resultado en el estado de la sesión + st.session_state.morphosyntax_result = { + 'doc': doc, + 'advanced_analysis': advanced_analysis + } + + # Incrementar el contador de análisis + st.session_state.morphosyntax_state['analysis_count'] += 1 + + # Guardar el análisis en la base de datos + if store_student_morphosyntax_result( + username=st.session_state.username, + text=sentence_input, + arc_diagrams=advanced_analysis['arc_diagrams'] + ): + st.success(morpho_t.get('success_message', 'Analysis saved successfully')) + + # Mostrar resultados + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + else: + st.error(morpho_t.get('error_message', 'Error saving analysis')) + + except Exception as e: + logger.error(f"Error en análisis morfosintáctico: {str(e)}") + st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) + + # 7. Mostrar resultados previos si existen + elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + elif not sentence_input.strip(): + st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis')) + + except Exception as e: + logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") + st.error("Se produjo un error. Por favor, intente de nuevo.") + st.error(f"Detalles del error: {str(e)}") # Añadido para mejor debugging + +############################################################################################################ +def display_morphosyntax_results(result, lang_code, morpho_t): + """ + Muestra los resultados del análisis morfosintáctico. + Args: + result: Resultado del análisis + lang_code: Código del idioma + t: Diccionario de traducciones + """ + # Obtener el diccionario de traducciones morfosintácticas + # morpho_t = t.get('MORPHOSYNTACTIC', {}) + + if result is None: + st.warning(morpho_t.get('no_results', 'No results available')) + return + + doc = result['doc'] + advanced_analysis = result['advanced_analysis'] + + # Mostrar leyenda + st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas + word_colors = get_repeated_words_colors(doc) + with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True): + highlighted_text = highlight_repeated_words(doc, word_colors) + st.markdown(highlighted_text, unsafe_allow_html=True) + + # Mostrar estructura de oraciones + with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** " # Aquí está el cambio + f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " # Y aquí + f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- " # Y aquí + f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- " # Y aquí + f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}" # Y aquí + ) + st.markdown(sentence_str) + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': morpho_t.get('grammatical_category', 'Grammatical category'), + 'count': morpho_t.get('count', 'Count'), + 'percentage': morpho_t.get('percentage', 'Percentage'), + 'examples': morpho_t.get('examples', 'Examples') + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True): + # 1. Crear el DataFrame inicial + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # 2. Primero renombrar las columnas usando las traducciones de la interfaz + column_mapping = { + 'text': morpho_t.get('word', 'Word'), + 'lemma': morpho_t.get('lemma', 'Lemma'), + 'pos': morpho_t.get('grammatical_category', 'Grammatical category'), + 'dep': morpho_t.get('dependency', 'Dependency'), + 'morph': morpho_t.get('morphology', 'Morphology') + } + + # 3. Aplicar el renombrado + morph_df = morph_df.rename(columns=column_mapping) + + # 4. Traducir las categorías gramaticales usando POS_TRANSLATIONS global + grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category') + morph_df[grammatical_category] = morph_df[grammatical_category].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # 2.2 Traducir dependencias usando traducciones específicas + dep_translations = { + + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + + dependency = morpho_t.get('dependency', 'Dependency') + morph_df[dependency] = morph_df[dependency].map(lambda x: dep_translations[lang_code].get(x, x)) + + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + + def translate_morph(morph_string, lang_code): + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morphology = morpho_t.get('morphology', 'Morphology') + morph_df[morphology] = morph_df[morphology].apply(lambda x: translate_morph(x, lang_code)) + + st.dataframe(morph_df) + + # Mostrar diagramas de arco + with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True): + sentences = list(doc.sents) + arc_diagrams = [] + + for i, sent in enumerate(sentences): + st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") + html = displacy.render(sent, style="dep", options={"distance": 100}) + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f']*>', + lambda m: m.group(0).replace('height="450"', 'height="300"'), + svg_html + ) + svg_html = re.sub( + r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f'{svg_html}' + return diagram_html + + except Exception as e: + logger.error(f"Error en display_arc_diagram: {str(e)}") + return "

Error generando diagrama

" + +########################################################################### +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + """ + Interfaz principal para la visualización de diagramas de arco + (Texto Base vs Iteraciones). + """ + # CSS para layout vertical y estable + st.markdown(""" + + """, unsafe_allow_html=True) + + # 1) Inicializar estados + initialize_arc_analysis_state() + arc_state = st.session_state.arc_analysis_state + + # 2) Creamos pestañas: "Texto Base" y "Iteraciones" + tabs = st.tabs(["Texto Base", "Iteraciones"]) + + # =================== PESTAÑA 1: Texto Base ========================== + with tabs[0]: + st.subheader("Análisis de Texto Base") + + # Botón para iniciar nuevo análisis + if st.button("Nuevo Análisis", key="btn_reset_base"): + # Si requieres recargar la app por completo, podrías descomentar: + # st.experimental_rerun() + reset_arc_analysis_state() + + # Textarea de texto base + arc_state["base_text"] = st.text_area( + "Ingrese su texto inicial", + value=arc_state["base_text"], + key="base_text_input", + height=150 + ) + + # Botón para analizar texto base + if st.button("Analizar Texto Base", key="btn_analyze_base"): + if not arc_state["base_text"].strip(): + st.warning("Ingrese un texto para analizar.") + else: + try: + # Procesar con spaCy + doc = nlp_models[lang_code](arc_state["base_text"]) + base_arc_html = display_arc_diagram(doc) + arc_state["base_diagram"] = base_arc_html + + # Guardar en Mongo + analysis = perform_advanced_morphosyntactic_analysis( + arc_state["base_text"], + nlp_models[lang_code] + ) + base_id = store_student_morphosyntax_base( + username=st.session_state.username, + text=arc_state["base_text"], + arc_diagrams=analysis["arc_diagrams"] + ) + if base_id: + arc_state["base_id"] = base_id + st.success(f"Análisis base guardado. ID: {base_id}") + + except Exception as exc: + st.error("Error procesando texto base") + logger.error(f"Error en análisis base: {str(exc)}") + + # Mostrar diagrama base + if arc_state["base_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("#### Diagrama de Arco (Texto Base)") + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + + # ================== PESTAÑA 2: Iteraciones ========================== + with tabs[1]: + st.subheader("Análisis de Cambios / Iteraciones") + + # Verificar que exista un texto base + if not arc_state["base_id"]: + st.info("Primero analiza un texto base en la pestaña anterior.") + return + + # --- 1) Mostrar SIEMPRE el diagrama base arriba --- + st.markdown("#### Diagrama de Arco (Texto Base)") + if arc_state["base_diagram"]: + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + else: + st.info("No hay diagrama base disponible.") + + # --- 2) Caja de texto para la iteración --- + st.markdown("
", unsafe_allow_html=True) + st.subheader("Texto de Iteración") + arc_state["iteration_text"] = st.text_area( + "Ingrese su nueva versión / iteración", + value=arc_state["iteration_text"], + height=150 + ) + + # Botón para analizar iteración + if st.button("Analizar Cambios", key="btn_analyze_iteration"): + if not arc_state["iteration_text"].strip(): + st.warning("Ingrese texto de iteración.") + else: + try: + # Procesar con spaCy + doc_iter = nlp_models[lang_code](arc_state["iteration_text"]) + arc_html_iter = display_arc_diagram(doc_iter) + arc_state["iteration_diagram"] = arc_html_iter + + # Guardar en Mongo + analysis_iter = perform_advanced_morphosyntactic_analysis( + arc_state["iteration_text"], + nlp_models[lang_code] + ) + iteration_id = store_student_morphosyntax_iteration( + username=st.session_state.username, + base_id=arc_state["base_id"], + original_text=arc_state["base_text"], + iteration_text=arc_state["iteration_text"], + arc_diagrams=analysis_iter["arc_diagrams"] + ) + if iteration_id: + st.success(f"Iteración guardada. ID: {iteration_id}") + + except Exception as exc: + st.error("Error procesando iteración") + logger.error(f"Error en iteración: {str(exc)}") + + # --- 3) Mostrar diagrama de iteración debajo --- + if arc_state["iteration_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("#### Diagrama de Arco (Iteración)") + st.write(arc_state["iteration_diagram"], unsafe_allow_html=True) \ No newline at end of file diff --git a/modules/morphosyntax/morphosyntax_interface_BackUp_Dec-28-Ok.py b/modules/morphosyntax/morphosyntax_interface_BackUp_Dec-28-Ok.py new file mode 100644 index 0000000000000000000000000000000000000000..38ab7f95c54e79429398ecc4539fb3340ff52520 --- /dev/null +++ b/modules/morphosyntax/morphosyntax_interface_BackUp_Dec-28-Ok.py @@ -0,0 +1,164 @@ +#modules/morphosyntax/morphosyntax_interface.py + +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy +from spacy import displacy +import spacy_streamlit +import pandas as pd +import base64 +import re + +from .morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis, + get_repeated_words_colors, + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..utils.widget_utils import generate_unique_key +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +import logging +logger = logging.getLogger(__name__) + + +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + try: + # Inicializar el estado si no existe + if 'morphosyntax_state' not in st.session_state: + st.session_state.morphosyntax_state = { + 'analysis_count': 0, + 'current_text': '', # Almacenar el texto actual + 'last_analysis': None, + 'needs_update': False # Flag para actualización + } + + # Campo de entrada de texto que mantiene su valor + text_key = "morpho_text_input" + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.morphosyntax_state['current_text'] = st.session_state[text_key] + st.session_state.morphosyntax_state['needs_update'] = True + + # Recuperar el texto anterior si existe + default_text = st.session_state.morphosyntax_state.get('current_text', '') + + sentence_input = st.text_area( + morpho_t.get('morpho_input_label', 'Enter text to analyze'), + value=default_text, # Usar el texto guardado + height=150, + key=text_key, + on_change=on_text_change, + placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...') + ) + + # Botón de análisis + col1, col2, col3 = st.columns([2,1,2]) + with col1: + analyze_button = st.button( + morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), + key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", + type="primary", + icon="🔍", + disabled=not bool(sentence_input.strip()), + use_container_width=True + ) + + # Procesar análisis solo cuando sea necesario + if (analyze_button or st.session_state.morphosyntax_state['needs_update']) and sentence_input.strip(): + try: + with st.spinner(morpho_t.get('processing', 'Processing...')): + doc = nlp_models[lang_code](sentence_input) + advanced_analysis = perform_advanced_morphosyntactic_analysis( + sentence_input, + nlp_models[lang_code] + ) + + st.session_state.morphosyntax_result = { + 'doc': doc, + 'advanced_analysis': advanced_analysis + } + + # Solo guardar en DB si fue un click en el botón + if analyze_button: + if store_student_morphosyntax_result( + username=st.session_state.username, + text=sentence_input, + arc_diagrams=advanced_analysis['arc_diagrams'] + ): + st.success(morpho_t.get('success_message', 'Analysis saved successfully')) + st.session_state.morphosyntax_state['analysis_count'] += 1 + + st.session_state.morphosyntax_state['needs_update'] = False + + # Mostrar resultados en un contenedor específico + with st.container(): + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + + except Exception as e: + logger.error(f"Error en análisis morfosintáctico: {str(e)}") + st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) + + # Mostrar resultados previos si existen + elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result: + with st.container(): + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + + except Exception as e: + logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") + st.error("Se produjo un error. Por favor, intente de nuevo.") + + + +def display_morphosyntax_results(result, lang_code, morpho_t): + """ + Muestra solo el análisis sintáctico con diagramas de arco. + """ + if result is None: + st.warning(morpho_t.get('no_results', 'No results available')) + return + + doc = result['doc'] + + # Análisis sintáctico (diagramas de arco) + st.markdown(f"### {morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram')}") + + with st.container(): + sentences = list(doc.sents) + for i, sent in enumerate(sentences): + with st.container(): + st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") + try: + html = displacy.render(sent, style="dep", options={ + "distance": 100, + "arrow_spacing": 20, + "word_spacing": 30 + }) + # Ajustar dimensiones del SVG + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f'{html}' + st.write(html, unsafe_allow_html=True) + except Exception as e: + logger.error(f"Error rendering sentence {i}: {str(e)}") + st.error(f"Error displaying diagram for sentence {i+1}") diff --git a/modules/morphosyntax/morphosyntax_interface_vOk-30-12-24.py b/modules/morphosyntax/morphosyntax_interface_vOk-30-12-24.py new file mode 100644 index 0000000000000000000000000000000000000000..e1371cb28d2de38bc8671bcaee75b675e171b2e8 --- /dev/null +++ b/modules/morphosyntax/morphosyntax_interface_vOk-30-12-24.py @@ -0,0 +1,247 @@ +# modules/morphosyntax/morphosyntax_interface.py + +import streamlit as st +import re +import logging +from spacy import displacy + +# Se asume que la función perform_advanced_morphosyntactic_analysis +# y los métodos store_student_morphosyntax_base/iteration existen. +from ..morphosyntax.morphosyntax_process import perform_advanced_morphosyntactic_analysis +from ..database.morphosyntax_iterative_mongo_db import ( + store_student_morphosyntax_base, + store_student_morphosyntax_iteration, +) + +logger = logging.getLogger(__name__) + +########################################################################### +def initialize_arc_analysis_state(): + """ + Inicializa el estado de análisis de arcos (base e iteraciones) si no existe. + """ + if "arc_analysis_state" not in st.session_state: + st.session_state.arc_analysis_state = { + "base_id": None, + "base_text": "", + "base_diagram": None, + "iteration_text": "", + "iteration_diagram": None, + } + logger.info("Estado de análisis de arcos inicializado.") + +########################################################################### +def reset_arc_analysis_state(): + """ + Resetea completamente el estado de análisis de arcos. + """ + st.session_state.arc_analysis_state = { + "base_id": None, + "base_text": "", + "base_diagram": None, + "iteration_text": "", + "iteration_diagram": None, + } + logger.info("Estado de arcos reseteado.") + +########################################################################### +def display_arc_diagram(doc): + """ + Genera y retorna el HTML del diagrama de arco para un `Doc` de spaCy. + No imprime directamente en pantalla; regresa el HTML para + usar con `st.write(..., unsafe_allow_html=True)`. + """ + try: + diagram_html = "" + for sent in doc.sents: + svg_html = displacy.render( + sent, + style="dep", + options={ + "distance": 100, + "arrow_spacing": 20, + "word_spacing": 30 + } + ) + # Ajustar tamaños + svg_html = svg_html.replace('height="375"', 'height="200"') + svg_html = re.sub( + r']*>', + lambda m: m.group(0).replace('height="450"', 'height="300"'), + svg_html + ) + svg_html = re.sub( + r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f'{svg_html}' + return diagram_html + + except Exception as e: + logger.error(f"Error en display_arc_diagram: {str(e)}") + return "

Error generando diagrama

" + +########################################################################### +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + """ + Interfaz principal para la visualización de diagramas de arco + (Texto Base vs Iteraciones). + """ + # CSS para layout vertical y estable + st.markdown(""" + + """, unsafe_allow_html=True) + + # 1) Inicializar estados + initialize_arc_analysis_state() + arc_state = st.session_state.arc_analysis_state + + # 2) Creamos pestañas: "Texto Base" y "Iteraciones" + tabs = st.tabs(["Texto Base", "Iteraciones"]) + + # =================== PESTAÑA 1: Texto Base ========================== + with tabs[0]: + st.subheader("Análisis de Texto Base") + + # Botón para iniciar nuevo análisis + if st.button("Nuevo Análisis", key="btn_reset_base"): + # Solo limpiamos el estado; si requieres forzar reload, + # descomenta la siguiente línea: + # st.experimental_rerun() + reset_arc_analysis_state() + + # Textarea de texto base + arc_state["base_text"] = st.text_area( + "Ingrese su texto inicial", + value=arc_state["base_text"], + key="base_text_input", + height=150 + ) + + # Botón para analizar texto base + if st.button("Analizar Texto Base", key="btn_analyze_base"): + if not arc_state["base_text"].strip(): + st.warning("Ingrese un texto para analizar.") + else: + try: + # Procesar con spaCy + doc = nlp_models[lang_code](arc_state["base_text"]) + # Generar HTML del arco + arc_html = display_arc_diagram(doc) + arc_state["base_diagram"] = arc_html + + # Guardar en Mongo + analysis = perform_advanced_morphosyntactic_analysis( + arc_state["base_text"], + nlp_models[lang_code] + ) + base_id = store_student_morphosyntax_base( + username=st.session_state.username, + text=arc_state["base_text"], + arc_diagrams=analysis["arc_diagrams"] + ) + if base_id: + arc_state["base_id"] = base_id + st.success(f"Análisis base guardado. ID: {base_id}") + + except Exception as exc: + st.error("Error procesando texto base") + logger.error(f"Error en análisis base: {str(exc)}") + + # Mostrar diagrama base + if arc_state["base_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("#### Diagrama de Arco (Texto Base)") + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + + # ================== PESTAÑA 2: Iteraciones ========================== + with tabs[1]: + st.subheader("Análisis de Cambios / Iteraciones") + + # Verificar que exista texto base analizado + if not arc_state["base_id"]: + st.info("Primero analiza un texto base en la pestaña anterior.") + return + + # Mostrar texto base como referencia (solo lectura) + st.text_area( + "Texto Base (solo lectura)", + value=arc_state["base_text"], + height=80, + disabled=True + ) + + # Caja de texto para la iteración + arc_state["iteration_text"] = st.text_area( + "Texto de Iteración", + value=arc_state["iteration_text"], + height=150 + ) + + # Botón analizar iteración + if st.button("Analizar Cambios", key="btn_analyze_iteration"): + if not arc_state["iteration_text"].strip(): + st.warning("Ingrese texto de iteración.") + else: + try: + # Procesar con spaCy + doc_iter = nlp_models[lang_code](arc_state["iteration_text"]) + arc_html_iter = display_arc_diagram(doc_iter) + arc_state["iteration_diagram"] = arc_html_iter + + # Guardar en Mongo + analysis_iter = perform_advanced_morphosyntactic_analysis( + arc_state["iteration_text"], + nlp_models[lang_code] + ) + iteration_id = store_student_morphosyntax_iteration( + username=st.session_state.username, + base_id=arc_state["base_id"], + original_text=arc_state["base_text"], + iteration_text=arc_state["iteration_text"], + arc_diagrams=analysis_iter["arc_diagrams"] + ) + if iteration_id: + st.success(f"Iteración guardada. ID: {iteration_id}") + + except Exception as exc: + st.error("Error procesando iteración") + logger.error(f"Error en iteración: {str(exc)}") + + # Mostrar diagrama de iteración + if arc_state["iteration_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("#### Diagrama de Arco (Iteración)") + st.write(arc_state["iteration_diagram"], unsafe_allow_html=True) + + # Comparación vertical (uno abajo del otro) + if arc_state["base_diagram"] and arc_state["iteration_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("### Comparación Vertical: Base vs. Iteración") + + st.markdown("**Diagrama Base**") + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + + st.markdown("---") + st.markdown("**Diagrama Iterado**") + st.write(arc_state["iteration_diagram"], unsafe_allow_html=True) \ No newline at end of file diff --git a/modules/morphosyntax/morphosyntax_process-Back1910-25-9-24.py b/modules/morphosyntax/morphosyntax_process-Back1910-25-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..191855b00ca8237f7dfd88afc925a314e82a2dc4 --- /dev/null +++ b/modules/morphosyntax/morphosyntax_process-Back1910-25-9-24.py @@ -0,0 +1,29 @@ +#modules/morphosyntax/morphosyntax_process.py +from ..text_analysis.morpho_analysis import perform_advanced_morphosyntactic_analysis +from ..database.database_oldFromV2 import store_morphosyntax_result +import streamlit as st + +def process_morphosyntactic_input(user_input, lang_code, nlp_models, t): + if user_input.startswith('/analisis_morfosintactico'): + # Extraer el texto entre corchetes + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + + # Realizar el análisis morfosintáctico + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + + if result is None: + response = t.get('morphosyntactic_analysis_error', 'Error in morphosyntactic analysis') + return response, None, None + + # Preparar la respuesta + response = t.get('morphosyntactic_analysis_completed', 'Morphosyntactic analysis completed') + + # Obtener todos los diagramas de arco + visualizations = result['arc_diagram'] + + return response, visualizations, result + else: + # Para otros tipos de input, simplemente devolver la respuesta del chatbot + chatbot = st.session_state.morphosyntax_chatbot + response = chatbot.generate_response(user_input, lang_code) + return response, None, None diff --git a/modules/morphosyntax/morphosyntax_process.py b/modules/morphosyntax/morphosyntax_process.py new file mode 100644 index 0000000000000000000000000000000000000000..407d29a66a20998b951d842619e354ee4dac803b --- /dev/null +++ b/modules/morphosyntax/morphosyntax_process.py @@ -0,0 +1,132 @@ +#modules/morphosyntax/morphosyntax_process.py +import streamlit as st + +from ..text_analysis.morpho_analysis import ( + get_repeated_words_colors, + highlight_repeated_words, + generate_arc_diagram, + get_detailed_pos_analysis, + get_morphological_analysis, + get_sentence_structure_analysis, + perform_advanced_morphosyntactic_analysis, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result + +import logging +logger = logging.getLogger(__name__) + + +def process_morphosyntactic_input(text, lang_code, nlp_models, t): + """ + Procesa el texto ingresado para realizar el análisis morfosintáctico. + + Args: + text: Texto a analizar + lang_code: Código del idioma + nlp_models: Diccionario de modelos spaCy + t: Diccionario de traducciones + + Returns: + tuple: (análisis, visualizaciones, texto_resaltado, mensaje) + """ + try: + # Realizar el análisis morfosintáctico + doc = nlp_models[lang_code](text) + + # Obtener el análisis avanzado + analysis = perform_advanced_morphosyntactic_analysis(text, nlp_models[lang_code]) + + # Generar visualizaciones - AQUÍ ESTÁ EL CAMBIO + arc_diagrams = generate_arc_diagram(doc) # Quitamos lang_code + + # Obtener palabras repetidas y texto resaltado + word_colors = get_repeated_words_colors(doc) + highlighted_text = highlight_repeated_words(doc, word_colors) + + # Guardar el análisis en la base de datos + store_student_morphosyntax_result( + st.session_state.username, + text, + { + 'arc_diagrams': arc_diagrams, + 'pos_analysis': analysis['pos_analysis'], + 'morphological_analysis': analysis['morphological_analysis'], + 'sentence_structure': analysis['sentence_structure'] + } + ) + + return { + 'analysis': analysis, + 'visualizations': arc_diagrams, + 'highlighted_text': highlighted_text, + 'success': True, + 'message': t.get('MORPHOSYNTACTIC', {}).get('success_message', 'Analysis completed successfully') + } + + except Exception as e: + logger.error(f"Error en el análisis morfosintáctico: {str(e)}") + return { + 'analysis': None, + 'visualizations': None, + 'highlighted_text': None, + 'success': False, + 'message': t.get('MORPHOSYNTACTIC', {}).get('error_message', f'Error in analysis: {str(e)}') + } + + +def format_analysis_results(analysis_result, t): + """ + Formatea los resultados del análisis para su visualización. + + Args: + analysis_result: Resultado del análisis morfosintáctico + t: Diccionario de traducciones + + Returns: + dict: Resultados formateados para visualización + """ + morpho_t = t.get('MORPHOSYNTACTIC', {}) + + if not analysis_result['success']: + return { + 'formatted_text': analysis_result['message'], + 'visualizations': None + } + + formatted_sections = [] + + # Formato para análisis POS + if 'pos_analysis' in analysis_result['analysis']: + pos_section = [f"### {morpho_t.get('pos_analysis', 'Part of Speech Analysis')}"] + for pos_item in analysis_result['analysis']['pos_analysis']: + pos_section.append( + f"- {morpho_t.get(pos_item['pos'], pos_item['pos'])}: " + f"{pos_item['count']} ({pos_item['percentage']}%)\n " + f"Ejemplos: {', '.join(pos_item['examples'])}" + ) + formatted_sections.append('\n'.join(pos_section)) + + # Agregar otras secciones de formato según sea necesario + + return { + 'formatted_text': '\n\n'.join(formatted_sections), + 'visualizations': analysis_result['visualizations'], + 'highlighted_text': analysis_result['highlighted_text'] + } + +# Re-exportar las funciones y constantes necesarias +__all__ = [ + 'process_morphosyntactic_input', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'get_repeated_words_colors', + 'get_detailed_pos_analysis', + 'get_morphological_analysis', + 'get_sentence_structure_analysis', + 'perform_advanced_morphosyntactic_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/modules/morphosyntax/morphosyntax_process_BackUp_Dec24_Ok.py b/modules/morphosyntax/morphosyntax_process_BackUp_Dec24_Ok.py new file mode 100644 index 0000000000000000000000000000000000000000..407d29a66a20998b951d842619e354ee4dac803b --- /dev/null +++ b/modules/morphosyntax/morphosyntax_process_BackUp_Dec24_Ok.py @@ -0,0 +1,132 @@ +#modules/morphosyntax/morphosyntax_process.py +import streamlit as st + +from ..text_analysis.morpho_analysis import ( + get_repeated_words_colors, + highlight_repeated_words, + generate_arc_diagram, + get_detailed_pos_analysis, + get_morphological_analysis, + get_sentence_structure_analysis, + perform_advanced_morphosyntactic_analysis, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result + +import logging +logger = logging.getLogger(__name__) + + +def process_morphosyntactic_input(text, lang_code, nlp_models, t): + """ + Procesa el texto ingresado para realizar el análisis morfosintáctico. + + Args: + text: Texto a analizar + lang_code: Código del idioma + nlp_models: Diccionario de modelos spaCy + t: Diccionario de traducciones + + Returns: + tuple: (análisis, visualizaciones, texto_resaltado, mensaje) + """ + try: + # Realizar el análisis morfosintáctico + doc = nlp_models[lang_code](text) + + # Obtener el análisis avanzado + analysis = perform_advanced_morphosyntactic_analysis(text, nlp_models[lang_code]) + + # Generar visualizaciones - AQUÍ ESTÁ EL CAMBIO + arc_diagrams = generate_arc_diagram(doc) # Quitamos lang_code + + # Obtener palabras repetidas y texto resaltado + word_colors = get_repeated_words_colors(doc) + highlighted_text = highlight_repeated_words(doc, word_colors) + + # Guardar el análisis en la base de datos + store_student_morphosyntax_result( + st.session_state.username, + text, + { + 'arc_diagrams': arc_diagrams, + 'pos_analysis': analysis['pos_analysis'], + 'morphological_analysis': analysis['morphological_analysis'], + 'sentence_structure': analysis['sentence_structure'] + } + ) + + return { + 'analysis': analysis, + 'visualizations': arc_diagrams, + 'highlighted_text': highlighted_text, + 'success': True, + 'message': t.get('MORPHOSYNTACTIC', {}).get('success_message', 'Analysis completed successfully') + } + + except Exception as e: + logger.error(f"Error en el análisis morfosintáctico: {str(e)}") + return { + 'analysis': None, + 'visualizations': None, + 'highlighted_text': None, + 'success': False, + 'message': t.get('MORPHOSYNTACTIC', {}).get('error_message', f'Error in analysis: {str(e)}') + } + + +def format_analysis_results(analysis_result, t): + """ + Formatea los resultados del análisis para su visualización. + + Args: + analysis_result: Resultado del análisis morfosintáctico + t: Diccionario de traducciones + + Returns: + dict: Resultados formateados para visualización + """ + morpho_t = t.get('MORPHOSYNTACTIC', {}) + + if not analysis_result['success']: + return { + 'formatted_text': analysis_result['message'], + 'visualizations': None + } + + formatted_sections = [] + + # Formato para análisis POS + if 'pos_analysis' in analysis_result['analysis']: + pos_section = [f"### {morpho_t.get('pos_analysis', 'Part of Speech Analysis')}"] + for pos_item in analysis_result['analysis']['pos_analysis']: + pos_section.append( + f"- {morpho_t.get(pos_item['pos'], pos_item['pos'])}: " + f"{pos_item['count']} ({pos_item['percentage']}%)\n " + f"Ejemplos: {', '.join(pos_item['examples'])}" + ) + formatted_sections.append('\n'.join(pos_section)) + + # Agregar otras secciones de formato según sea necesario + + return { + 'formatted_text': '\n\n'.join(formatted_sections), + 'visualizations': analysis_result['visualizations'], + 'highlighted_text': analysis_result['highlighted_text'] + } + +# Re-exportar las funciones y constantes necesarias +__all__ = [ + 'process_morphosyntactic_input', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'get_repeated_words_colors', + 'get_detailed_pos_analysis', + 'get_morphological_analysis', + 'get_sentence_structure_analysis', + 'perform_advanced_morphosyntactic_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/modules/morphosyntax/txt.txt b/modules/morphosyntax/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/semantic/__init_.py b/modules/semantic/__init_.py new file mode 100644 index 0000000000000000000000000000000000000000..ba6219c1088c717ac77136cb933347733d716a35 --- /dev/null +++ b/modules/semantic/__init_.py @@ -0,0 +1,17 @@ +# modules/semantic/__init_.py + +from .semantic_interface import ( + display_semantic_interface, + display_semantic_results +) +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +__all__ = [ + 'display_semantic_interface', + 'display_semantic_results', + 'process_semantic_input', + 'format_semantic_results' +] \ No newline at end of file diff --git a/modules/semantic/__pycache__/flexible_analysis_handler.cpython-311.pyc b/modules/semantic/__pycache__/flexible_analysis_handler.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ee65f50c83dd3bfd0530139fa905960ce57b8a24 Binary files /dev/null and b/modules/semantic/__pycache__/flexible_analysis_handler.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_float.cpython-311.pyc b/modules/semantic/__pycache__/semantic_float.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..afb9426ea5597b3d85ac0f0500d665a49b1a147b Binary files /dev/null and b/modules/semantic/__pycache__/semantic_float.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_float68ok.cpython-311.pyc b/modules/semantic/__pycache__/semantic_float68ok.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2736c7be7b369af9c9368810c98d590ef66db70e Binary files /dev/null and b/modules/semantic/__pycache__/semantic_float68ok.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_float86ok.cpython-311.pyc b/modules/semantic/__pycache__/semantic_float86ok.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0640e8983813bc16ee13251e6d6d65ffa23c823a Binary files /dev/null and b/modules/semantic/__pycache__/semantic_float86ok.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_float_reset.cpython-311.pyc b/modules/semantic/__pycache__/semantic_float_reset.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..021862ba760cca86a770a4d0c46349894e389ae6 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_float_reset.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8a9a3c5527bfc1667cf12cb816298b9b8dc4314 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interfaceBackUp_2092024_1800.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interfaceBackUp_2092024_1800.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b49443b6b818aef2248867278c43369ca51a662 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interfaceBackUp_2092024_1800.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interfaceBorrados.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interfaceBorrados.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef8bf460009df8fd59e3d489ebdce3163f2588f6 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interfaceBorrados.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interfaceKoKo.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interfaceKoKo.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c42b43be508ed128eac77ae0f753dc575a9113e Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interfaceKoKo.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_1.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_1.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9f0fef968b2f37b43dfc116c5f2ce2eb3d9e099 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_1.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_2.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_2.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46222222f83623c6b7de8bb0a92c634af86f8744 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_2.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_2192024_1632.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_2192024_1632.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d62dabaaf573d5de0a760a242a43332955c9f36 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_2192024_1632.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_3.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_3.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9b5eec9852b9159bbf76c1f7d8482108c099803 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_3.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_4.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_4.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..701cbc0e83a28b4a25fd8aa80465fd5e79e7b01a Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_4.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_5.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_5.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52ee832d6ece08e1f92d23f223e56796b1a2cc54 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_5.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_6.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_6.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcbe12108da351a568e772abfbb883d25b08c517 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_6.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_61.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_61.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..386c8ac736aeeb2a120880d3e6bfae0facc9f7f2 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_61.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_610.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_610.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f60c48f197a142f57c9f59cb1055ae57db32407f Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_610.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_62.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_62.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fedd207e2531dc00d3ee98645be42383e194e8db Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_62.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_63.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_63.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78b98d5ffad8ec43b02cdcafab3a6752e4a27ef7 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_63.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_64.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_64.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e94c4a23f3a5c2098964ce3f8d5d67d561e0a944 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_64.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_65.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_65.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4e45c7073838ffe64539d9470f4efecc2dad75b0 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_65.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_66.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_66.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bd5c0b21aba6451de1963b18e79e2e8121f69f0 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_66.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_67.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_67.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fa300c5559d94da29f1c2dc3a5c0712e028ea6f Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_67.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_68.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_68.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5bc6395eabbac5e54d20a38a4eb1aaf61e4e171e Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_68.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_681.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_681.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d13664fec98f1609721ede6a5ab8abf88480f375 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_681.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_68ok.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_68ok.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85965738ee096cba107008fa62c5d60004d3fad7 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_68ok.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_69.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_69.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66c5867ad061bca00a6ec984d824ea694fe26adc Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_69.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_7.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_7.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef2c5bc6d30879a47186e7e17858e0b3a001bb04 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_7.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_StreamLitChat.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_StreamLitChat.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d43c979fafff38614b9565936d755342894b7abf Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_StreamLitChat.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_Test.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_Test.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5c14d8bf89c9a1e8f5887e40f3c307ea0f43fbf Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_Test.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_afterParty.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_afterParty.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cce4f330ccd69352a6f6ec411dfa26d5fd01789c Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_afterParty.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_backup2092024_1930.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_backup2092024_1930.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7940c44b2027728a9e8478d2c5a508ed44070469 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_backup2092024_1930.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_backup_2092024.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_backup_2092024.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3db97b9995c894928a31892cda744d6c4da483f9 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_backup_2092024.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_backup_2192024_1230.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_backup_2192024_1230.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64b09631b0b72880568c8077ba29bb75283d88c1 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_backup_2192024_1230.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_interface_vOk.cpython-311.pyc b/modules/semantic/__pycache__/semantic_interface_vOk.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9f2fa094a416e6429b9a3bccb0312558c955c02 Binary files /dev/null and b/modules/semantic/__pycache__/semantic_interface_vOk.cpython-311.pyc differ diff --git a/modules/semantic/__pycache__/semantic_process.cpython-311.pyc b/modules/semantic/__pycache__/semantic_process.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..58e1056dd70a702aa4ea3f67e4ff20e54923fd9c Binary files /dev/null and b/modules/semantic/__pycache__/semantic_process.cpython-311.pyc differ diff --git a/modules/semantic/flexible_analysis_handler.py b/modules/semantic/flexible_analysis_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..3e4396ab87a2a3559c06d41b388e7cdc4b843048 --- /dev/null +++ b/modules/semantic/flexible_analysis_handler.py @@ -0,0 +1,59 @@ +from typing import Dict, Any +import base64 +from io import BytesIO +from matplotlib.figure import Figure + +class FlexibleAnalysisHandler: + def __init__(self, analysis_data): + self.data = analysis_data + + def get_key_concepts(self): + return self.data.get('key_concepts', []) + + def get_concept_graph(self): + return self.data.get('concept_graph') + + def get_entity_graph(self): + return self.data.get('entity_graph') + + # Método genérico para obtener cualquier tipo de grafo + def get_graph(self, graph_type): + return self.data.get(graph_type) + + # Agrega más métodos según sea necesario + + +''' +class FlexibleAnalysisHandler: + def __init__(self, analysis_data: Dict[str, Any]): + self.data = analysis_data + + def get_key_concepts(self): + if 'key_concepts' in self.data: + return self.data['key_concepts'] + elif 'word_count' in self.data: + # Convertir word_count a un formato similar a key_concepts + return [(word, count) for word, count in self.data['word_count'].items()] + return [] + + def get_graph(self): + if 'graph' in self.data: + # Decodificar la imagen base64 + image_data = base64.b64decode(self.data['graph']) + return BytesIO(image_data) + elif 'arc_diagrams' in self.data: + # Devolver el primer diagrama de arco como SVG + return self.data['arc_diagrams'][0] + return None + + def get_pos_analysis(self): + return self.data.get('pos_analysis', []) + + def get_morphological_analysis(self): + return self.data.get('morphological_analysis', []) + + def get_sentence_structure(self): + return self.data.get('sentence_structure', []) + + # Agregar más métodos según sea necesario para otros tipos de análisis +''' \ No newline at end of file diff --git a/modules/semantic/logV6ite5.txt b/modules/semantic/logV6ite5.txt new file mode 100644 index 0000000000000000000000000000000000000000..27ff0010ade774a6e958f97c6f380c6b08050b14 --- /dev/null +++ b/modules/semantic/logV6ite5.txt @@ -0,0 +1,63 @@ +Request headers: + 'Cache-Control': 'no-cache' + 'x-ms-version': 'REDACTED' + 'x-ms-documentdb-query-iscontinuationexpected': 'REDACTED' + 'x-ms-consistency-level': 'REDACTED' + 'x-ms-documentdb-isquery': 'REDACTED' + 'Content-Type': 'application/query+json' + 'x-ms-session-token': 'REDACTED' + 'x-ms-documentdb-query-enablecrosspartition': 'REDACTED' + 'x-ms-date': 'REDACTED' + 'authorization': 'REDACTED' + 'Accept': 'application/json' + 'x-ms-cosmos-correlated-activityid': 'REDACTED' + 'Content-Length': '154' + 'User-Agent': 'azsdk-python-cosmos/4.7.0 Python/3.11.5 (Windows-10-10.0.22631-SP0)' +A body is sent with the request +INFO:azure.core.pipeline.policies.http_logging_policy:Response status: 200 +Response headers: + 'Content-Length': '377' + 'Date': 'Mon, 23 Sep 2024 16:50:28 GMT' + 'Content-Type': 'application/json' + 'Server': 'Compute' + 'x-ms-gatewayversion': 'REDACTED' + 'x-ms-activity-id': 'REDACTED' + 'x-ms-last-state-change-utc': 'REDACTED' + 'x-ms-resource-quota': 'REDACTED' + 'x-ms-resource-usage': 'REDACTED' + 'x-ms-schemaversion': 'REDACTED' + 'lsn': 'REDACTED' + 'x-ms-item-count': 'REDACTED' + 'x-ms-request-charge': 'REDACTED' + 'x-ms-alt-content-path': 'REDACTED' + 'x-ms-content-path': 'REDACTED' + 'x-ms-documentdb-partitionkeyrangeid': 'REDACTED' + 'x-ms-xp-role': 'REDACTED' + 'x-ms-cosmos-query-execution-info': 'REDACTED' + 'x-ms-global-Committed-lsn': 'REDACTED' + 'x-ms-number-of-read-regions': 'REDACTED' + 'x-ms-transport-request-id': 'REDACTED' + 'x-ms-cosmos-llsn': 'REDACTED' + 'x-ms-session-token': 'REDACTED' + 'x-ms-request-duration-ms': 'REDACTED' + 'x-ms-serviceversion': 'REDACTED' + 'x-ms-cosmos-is-partition-key-delete-pending': 'REDACTED' + 'x-ms-cosmos-physical-partition-id': 'REDACTED' +2024-09-23 10:50:28.499 `label` got an empty value. This is discouraged for accessibility reasons and may be disallowed in the future by raising an exception. Please provide a non-empty label and hide it with label_visibility if needed. +ERROR:modules.database.database:Error al obtener detalles de análisis para el usuario sebastian.marroquin@aideatext.ai: Error=2, Details='Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]} +ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133658946384147008s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););, full error: {'ok': 0.0, 'errmsg': 'Error=2, Details=\'Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]}\r\nActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133658946384147008s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););', 'code': 2, 'codeName': 'BadValue'} +ERROR:modules.database.database:Error al obtener detalles de análisis para el usuario sebastian.marroquin@aideatext.ai: Error=2, Details='Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]} +ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););, full error: {'ok': 0.0, 'errmsg': 'Error=2, Details=\'Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]}\r\nActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););', 'code': 2, 'codeName': 'BadValue'} +ERROR:modules.database.database:Error al obtener detalles de análisis para el usuario sebastian.marroquin@aideatext.ai: Error=2, Details='Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]} +ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););, full error: {'ok': 0.0, 'errmsg': 'Error=2, Details=\'Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]}\r\nActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););', 'code': 2, 'codeName': 'BadValue'} +ERROR:modules.ui.ui:Error en la pestaña 3: 'timestamp' +Traceback (most recent call last): + File "M:\test-3dev\modules\ui\ui.py", line 177, in user_page + func(st.session_state.username, st.session_state.lang_code, t) + File "M:\test-3dev\modules\studentact\student_activities.py", line 88, in display_student_progress + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + ~~~~^^^^^^^^^^^^^ +KeyError: 'timestamp' +INFO:root:display_feedback_form called with lang_code: es +INFO:modules.ui.ui:Finalizada la renderización de user_page +INFO:modules.ui.ui:Estado final de la sesión: {'semantic_file_selector_sebastian.marroquin@aideatext.ai': 'Uso de stanza en el análisis sintác.txt', 'graph_visible': True, 'logout_button_sebastian.marroquin@aideatext.ai_es': False, 'discourse_chatbot': , 'language_selector_sebastian.marroquin@aideatext.ai_es': 'Español', 'semantic_chatbot': , 'semantic_chat_history': [{'role': 'user', 'content': 'Hola'}, {'role': 'assistant', 'content': 'Hola, gracias por contactarme. \n\nPara ayudarte con el requerimiento funcional a nivel sintáctico, primero elaboraré una secuencia didáctica estándar de cómo enseñar a mejorar las habilidades de redacción de un estudiante partiendo de un análisis sintáctico:\n\nPaso 1: Leer el texto redactado por el estudiante e identificar problemas de sintaxis como oraciones mal construidas, errores en concordancia de género y número, uso incorrecto de tiempos verbales, etc. \n\nPaso 2: Explicar al estudiante los conceptos básicos de sintaxis y estructura oracional. Por ejemplo, sujeto, verbo, complementos, oraciones simples vs compuestas, etc.\n\nPaso 3: Presentar al estudiante ejemplos de oraciones con problemas sintácticos y pedirle que los identifique y corrija. Guiarlo en este proceso de autocorrección.\n\nPaso 4: Solicitar al estudiante que aplique lo aprendido a su propio texto, identificando y corrigiendo problemas de sintaxis. Se puede utilizar diferentes colores para resaltar dist'}], 'delete_audio prompt.txt.txt': False, 'db_initialized': {'mongodb': True, 'cosmos_sql': True}, 'file_contents': None, 'semantic_chat_input_sebastian.marroquin@aideatext.ai': 'Hola', 'lang_code': 'es', 'morphosyntax_chatbot': , 'semantic_send_message_sebastian.marroquin@aideatext.ai': False, 'delete_Semblanza.txt': False, 'morphosyntax_chat_input_sebastian.marroquin@aideatext.ai': None, 'nlp_models': {'es': , 'en': , 'fr': }, 'feedback_name_es': '', 'role': 'role', 'discourse_sebastian.marroquin@aideatext.ai_sebastian.marroquin@aideatext.ai': None, 'username': 'sebastian.marroquin@aideatext.ai', 'current_file_contents': 'Uso de stanza en el análisis sintáctico en la enseñanza de la redacción. \r\n\r\nStanza es una biblioteca de procesamiento del lenguaje natural (NLP) desarrollada por Stanford NLP Group, que ofrece una serie de herramientas de análisis lingüístico para muchos idiomas. Sus capacidades se extienden desde la segmentación de texto hasta análisis más complejos como el reconocimiento de partes del discurso, análisis de entidades nombradas, análisis sintáctico y semántico, entre otros. \r\n\r\n\r\nAquí te explico cómo algunas de sus funcionalidades específicas pueden facilitar la implementación de actividades de aprendizaje de la redacción en el nivel medio superior y superior, desde un enfoque andragógico:\r\n\r\nSegmentación de texto en oraciones y palabras.\r\nEsta funcionalidad puede ayudar a los estudiantes a identificar la estructura básica de los textos. \r\nAl descomponer un texto en sus componentes más básicos, los estudiantes pueden empezar a entender cómo se construyen las oraciones y párrafos, lo cual es fundamental para la redacción.\r\n\r\nReconocimiento de partes del discurso (POS tagging): Comprender las partes del discurso es esencial para el análisis sintáctico y la construcción de oraciones coherentes y complejas. Stanza puede ayudar a los estudiantes a identificar automáticamente sustantivos, verbos, adjetivos, etc., en los textos que escriben o analizan, lo que facilita el aprendizaje de la gramática y la sintaxis de manera aplicada.\r\nAnálisis de entidades nombradas (NER): Esta herramienta puede ser útil para actividades de redacción que involucren investigación y análisis de textos. \r\n\r\nAl identificar personas, lugares, organizaciones y otros tipos de entidades dentro de un texto, los estudiantes pueden aprender a distinguir entre diferentes tipos de información y a utilizarlos adecuadamente en sus escritos.\r\n\r\nAnálisis sintáctico: El análisis de la estructura de las oraciones puede mejorar significativamente la calidad de la escritura. Stanza permite analizar cómo las palabras en una oración se relacionan entre sí, lo que puede ayudar a los estudiantes a comprender y aplicar conceptos de coherencia y cohesión en sus textos.\r\n\r\nAnálisis de dependencias: Esta funcionalidad ofrece una visión detallada de las relaciones sintácticas dentro de las oraciones, lo cual es crucial para construir oraciones complejas y bien formadas. Los estudiantes pueden utilizar esta herramienta para revisar y mejorar la estructura sintáctica de sus escritos.\r\nLematización y stemming: Ayuda a los estudiantes a comprender la raíz de las palabras y sus variaciones, lo cual es útil para la ampliación del vocabulario y la correcta utilización de las palabras en diferentes contextos.\r\nDesde el punto de vista andragógico, el uso de herramientas como Stanza puede fomentar un enfoque más autodirigido y reflexivo hacia el aprendizaje de la redacción. Los estudiantes pueden utilizar estas herramientas para analizar y mejorar sus propios textos, recibir retroalimentación inmediata sobre aspectos específicos de su escritura, y llevar a cabo investigaciones lingüísticas que enriquezcan su comprensión del idioma. La incorporación de tecnologías digitales en el aprendizaje se alinea con las necesidades y estilos de aprendizaje de los adultos, promoviendo la autonomía, la autoevaluación y la aplicación práctica de los conocimientos adquiridos.\r\n\r\n \r\nAnexo I. Requerimiento funcional a nivel sintáctico [Producto 1]\r\nEn esta sección vamos a describir las tareas que deberá realizar el o la profesional identificada como usuaria / usuario líder. Para este caso es un profesional competente en la enseñanza y el aprendizaje del idioma castellano y que posee este idioma como lenguaje materno. Entonces requerimos de sus servicios profesionales par que: \r\n[Subproducto 11] Elaborar una secuencia [didáctica] estándar de como enseñaría a mejorar las habilidades de un estudiante partiendo de un análisis sintáctico. No requerimos que nos describa como hacer un análisis sintáctico, sino que como enseña a redactar al estudiante empleando sus diferentes técnicas y métodos dentro del nivel sintáctico. \r\nEjemplo:\r\n\r\nPaso 5: Evaluar. \r\nCuando el estudiante termina de redactar un texto tengo que corregir. Entonces tomo un boli rojo y comienzo a leer y marco las palabras repetidas, pero también cuando no hay relación entre género y número; y así, [en este caso la descripción tiene que ser detallada]\r\nPaso 6: Retro alimentación de la evaluación\r\nEn este momento trato de orientar mis comentarios hacia las fortalezas del estudiante y después le indico como es que puede mejorar su redacción, le presento ejemplos de otros textos que son cercanos a su estilo [en este caso la descripción tiene que ser detallada]\r\n[Subroducto 12] Con los resultados del producto [11] es importante que reporte cuáles tareas podrías ser reemplazadas por funciones en la funcionalidad de análisis semántico de AIdeaText. Es importante que grafique, empleando la interfase de AIdeaText, como se vería está funcionalidad. En ese sentido, es importante que anote que visualizaciones funcionarían mejor (o si ninguna funciona) que otras o si se requiere implementar otras funcionalidades que, de hacerlo de manera manual, serían muy laboriosas de hacer. \r\nEjemplo: \r\nFunción evaluar: La aplicación, al presentar una visualización ya está entregado una evaluación. Pero para el caso sintáctico no sería mejor que devuelva el mismo escrito, pero señalando con un círculo donde se encuentran las palabras repetidas, por ejemplo. [Se debe dibujar como se vería esta función en la interfase]\r\n', 'morphosyntax_clear_chat_sebastian.marroquin@aideatext.ai': False, 'concept_graph': '', 'initialized': True, 'feedback_text_es': '', 'semantic_clear_chat_sebastian.marroquin@aideatext.ai': False, 'discourse_clear_chat_sebastian.marroquin@aideatext.ai': False, 'key_concepts': [('análisis', 12.0), ('estudiante', 12.0), ('texto', 11.0), ('oración', 7.0), ('redacción', 6.0), ('funcionalidad', 6.0), ('aprendizaje', 6.0), ('palabra', 6.0), (']', 6.0), ('herramienta', 5.0)], 'logged_in': True, 'feedback_email_es': '', 'morphosyntax_chat_history': [], 'feedback_submit_es': False, 'toggle_graph': False, 'entity_graph': '', 'graph_id': 'semantic-float-4a0c84f3', 'semantic_file_uploader_sebastian.marroquin@aideatext.ai': None, 'delete_Uso de stanza en el análisis sintác.txt': False, 'page': 'user'} diff --git a/modules/semantic/semantic_float.py b/modules/semantic/semantic_float.py new file mode 100644 index 0000000000000000000000000000000000000000..043ab99ab13630b25c8bbbedb4a734b627e4a337 --- /dev/null +++ b/modules/semantic/semantic_float.py @@ -0,0 +1,213 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components + + +''' + +# Lista de estilos de sombra y transición (sin cambios) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+
+ {content} +
+
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) +''' + + +# Lista de estilos de sombra (puedes ajustar según tus preferencias) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica.""" + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + """ + Crea un contenedor flotante para el gráfico de visualización semántica. + + :param content: Contenido HTML o Markdown para el gráfico + :param width: Ancho del contenedor + :param height: Altura del contenedor + :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right') + :param shadow: Índice del estilo de sombra a utilizar + :param transition: Índice del estilo de transición a utilizar + """ + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + """ + Crea un contenedor flotante genérico. + + :param content: Contenido HTML o Markdown para el contenedor + :param css: Estilos CSS adicionales + """ + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+
+ {content} +
+
+ """, unsafe_allow_html=True) + return box_id + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario \ No newline at end of file diff --git a/modules/semantic/semantic_float68ok.py b/modules/semantic/semantic_float68ok.py new file mode 100644 index 0000000000000000000000000000000000000000..a57a08d49e3c3945b90a1a358305e520a6e1d650 --- /dev/null +++ b/modules/semantic/semantic_float68ok.py @@ -0,0 +1,467 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import streamlit.components.v1 as stc + +########################## PRUEBA 1 ######################### + # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN DOS BOX FLOTANTES +# Lista de estilos de sombra (puedes ajustar según tus preferencias) + +''' +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +#################################################### +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + css = f""" + width: {width}; + height: {height}; + position: fixed; + z-index: 9999; + background-color: white; + border: 1px solid #ddd; + padding: 10px; + overflow: auto; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + return float_box(content, css=css) + +######################################################### +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+ {content} +
+ """, unsafe_allow_html=True) + return box_id + +######################################################### + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +########################################################### +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario +''' + +################################################# version backup ######################### + # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN SOLO UN CUADRO A LA DERECJHA Y AL CENTRO + # Lista de estilos de sombra (puedes ajustar según tus preferencias) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + + +def semantic_float_init(): + """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica.""" + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + """ + Crea un contenedor flotante para el gráfico de visualización semántica. + + :param content: Contenido HTML o Markdown para el gráfico + :param width: Ancho del contenedor + :param height: Altura del contenedor + :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right') + :param shadow: Índice del estilo de sombra a utilizar + :param transition: Índice del estilo de transición a utilizar + """ + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + """ + Crea un contenedor flotante genérico. + + :param content: Contenido HTML o Markdown para el contenedor + :param css: Estilos CSS adicionales + """ + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+
+ {content} +
+
+ """, unsafe_allow_html=True) + return box_id + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario +#################FIN BLOQUE DEL BACK UP################################################# + + + + + + + + + + + + + + + + + + + + + +''' +############ TEST ######################################### +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + position: fixed; + width: {width}; + height: {height}; + {position_css.get(position, position_css['center-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + z-index: 9999; + display: block !important; + background-color: white; + border: 1px solid #ddd; + border-radius: 5px; + padding: 10px; + overflow: auto; + """ + + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + html_content = f""" +
+ {content} +
+ + """ + + components.html(html_content, height=600, scrolling=True) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) + + + + + + + + + + +############BackUp ######################################### + + + + + + + + + + + + + + + + + + + + + + + + +# Lista de estilos de sombra y transición (sin cambios) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+
+ {content} +
+
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) +''' \ No newline at end of file diff --git a/modules/semantic/semantic_float_old.py b/modules/semantic/semantic_float_old.py new file mode 100644 index 0000000000000000000000000000000000000000..192c7a46004ab8b35c2046cde482a001088475c7 --- /dev/null +++ b/modules/semantic/semantic_float_old.py @@ -0,0 +1,220 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import base64 + +''' + +# Lista de estilos de sombra y transición (sin cambios) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+
+ {content} +
+
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) +''' + + +# Lista de estilos de sombra (puedes ajustar según tus preferencias) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + + +def encode_image_to_base64(image_path): + with open(image_path, "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()).decode("utf-8") + return f"data:image/png;base64,{encoded_string}" + + +def semantic_float_init(): + """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica.""" + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + """ + Crea un contenedor flotante para el gráfico de visualización semántica. + + :param content: Contenido HTML o Markdown para el gráfico + :param width: Ancho del contenedor + :param height: Altura del contenedor + :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right') + :param shadow: Índice del estilo de sombra a utilizar + :param transition: Índice del estilo de transición a utilizar + """ + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + """ + Crea un contenedor flotante genérico. + + :param content: Contenido HTML o Markdown para el contenedor + :param css: Estilos CSS adicionales + """ + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+
+ {content} +
+
+ """, unsafe_allow_html=True) + return box_id + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario diff --git a/modules/semantic/semantic_float_reset.py b/modules/semantic/semantic_float_reset.py new file mode 100644 index 0000000000000000000000000000000000000000..1d782eb27f4493283de556391ef49334ed6e7256 --- /dev/null +++ b/modules/semantic/semantic_float_reset.py @@ -0,0 +1,94 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import base64 + +# Lista de estilos de sombra +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", + +] + +################################################################################### +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + + components.html(""" +
+ + """, height=0) + +def float_graph(content): + js = f""" + + """ + components.html(js, height=0) + +def toggle_float_visibility(visible): + js = f""" + + """ + components.html(js, height=0) + +def update_float_content(new_content): + js = f""" + + """ + components.html(js, height=0) \ No newline at end of file diff --git a/modules/semantic/semantic_float_reset_23-9-2024.py b/modules/semantic/semantic_float_reset_23-9-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..5d8fb602fec66518348fcfa37e1a272284a7adf4 --- /dev/null +++ b/modules/semantic/semantic_float_reset_23-9-2024.py @@ -0,0 +1,128 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import base64 + +# Lista de estilos de sombra +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + components.html(""" + + """, height=0) + +def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + position: fixed; + width: {width}; + height: {height}; + {position_css.get(position, position_css['center-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + z-index: 9999; + display: block !important; + background-color: white; + border: 1px solid #ddd; + border-radius: 5px; + padding: 10px; + overflow: auto; + """ + + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+ {content} +
+ + """, height=0) + return box_id + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+ {content} +
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) \ No newline at end of file diff --git a/modules/semantic/semantic_interface.py b/modules/semantic/semantic_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..48eeb0420c0c7dce0046a4cbb1aa1d08f6d21732 --- /dev/null +++ b/modules/semantic/semantic_interface.py @@ -0,0 +1,293 @@ +#modules/semantic/semantic_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy_streamlit +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import pandas as pd +import re +import logging + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +from ..utils.widget_utils import generate_unique_key +from ..database.semantic_mongo_db import store_student_semantic_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +# from ..database.semantic_export import export_user_interactions + + +############################### +def display_semantic_interface(lang_code, nlp_models, semantic_t): + """ + Interfaz para el análisis semántico + Args: + lang_code: Código del idioma actual + nlp_models: Modelos de spaCy cargados + semantic_t: Diccionario de traducciones semánticas + """ + try: + # 1. Inicializar el estado de la sesión + if 'semantic_state' not in st.session_state: + st.session_state.semantic_state = { + 'analysis_count': 0, + 'last_analysis': None, + 'current_file': None + } + + # 2. Área de carga de archivo con mensaje informativo + st.info(semantic_t.get('initial_instruction', + 'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)')) + + uploaded_file = st.file_uploader( + semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'), + type=['txt'], + key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}" + ) + + # 3. Columnas para los botones y mensajes + col1, col2 = st.columns([1,4]) + + # 4. Botón de análisis + with col1: + analyze_button = st.button( + semantic_t.get('semantic_analyze_button', 'Analyze'), + key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}", + type="primary", # Nuevo en Streamlit 1.39.0 + icon="🔍", # Nuevo en Streamlit 1.39.0 + disabled=uploaded_file is None, + use_container_width=True + ) + + # 5. Procesar análisis + if analyze_button and uploaded_file is not None: + try: + with st.spinner(semantic_t.get('processing', 'Processing...')): + # Leer contenido del archivo + text_content = uploaded_file.getvalue().decode('utf-8') + + # Realizar análisis + analysis_result = process_semantic_input( + text_content, + lang_code, + nlp_models, + semantic_t + ) + + if analysis_result['success']: + # Guardar resultado + st.session_state.semantic_result = analysis_result + st.session_state.semantic_state['analysis_count'] += 1 + st.session_state.semantic_state['current_file'] = uploaded_file.name + + # Guardar en base de datos + if store_student_semantic_result( + st.session_state.username, + text_content, + analysis_result['analysis'] + ): + st.success( + semantic_t.get('analysis_complete', + 'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.') + ) + + # Mostrar resultados + display_semantic_results( + st.session_state.semantic_result, + lang_code, + semantic_t + ) + else: + st.error(semantic_t.get('error_message', 'Error saving analysis')) + else: + st.error(analysis_result['message']) + + except Exception as e: + logger.error(f"Error en análisis semántico: {str(e)}") + st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) + + # 6. Mostrar resultados previos o mensaje inicial + elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: + # Mostrar mensaje sobre el análisis actual + st.info( + semantic_t.get('current_analysis_message', + f'Mostrando análisis del archivo: {st.session_state.semantic_state["current_file"]}. ' + 'Para realizar un nuevo análisis, cargue otro archivo.') + ) + + display_semantic_results( + st.session_state.semantic_result, + lang_code, + semantic_t + ) + else: + st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis')) + + except Exception as e: + logger.error(f"Error general en interfaz semántica: {str(e)}") + st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + +####################################### +def display_semantic_results(semantic_result, lang_code, semantic_t): + """ + Muestra los resultados del análisis semántico de conceptos clave. + """ + if semantic_result is None or not semantic_result['success']: + st.warning(semantic_t.get('no_results', 'No results available')) + return + + analysis = semantic_result['analysis'] + + # Mostrar conceptos clave en formato horizontal + st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) + if 'key_concepts' in analysis and analysis['key_concepts']: + # Crear tabla de conceptos + df = pd.DataFrame( + analysis['key_concepts'], + columns=[ + semantic_t.get('concept', 'Concept'), + semantic_t.get('frequency', 'Frequency') + ] + ) + + # Convertir DataFrame a formato horizontal + st.write( + """ + +
+ """ + + ''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in df.values + ]) + + "
", + unsafe_allow_html=True + ) + else: + st.info(semantic_t.get('no_concepts', 'No key concepts found')) + + # Gráfico de conceptos + st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) + if 'concept_graph' in analysis and analysis['concept_graph'] is not None: + try: + # Container para el grafo con estilos mejorados + st.markdown( + """ + + """, + unsafe_allow_html=True + ) + + with st.container(): + st.markdown('
', unsafe_allow_html=True) + + # Mostrar grafo + graph_bytes = analysis['concept_graph'] + graph_base64 = base64.b64encode(graph_bytes).decode() + st.markdown( + f'Concept Graph', + unsafe_allow_html=True + ) + + # Leyenda del grafo + st.caption(semantic_t.get( + 'graph_description', + 'Visualización de relaciones entre conceptos clave identificados en el texto.' + )) + + st.markdown('
', unsafe_allow_html=True) + + # Contenedor para botones + col1, col2 = st.columns([1,4]) + with col1: + st.download_button( + label="📥 " + semantic_t.get('download_graph', "Download"), + data=graph_bytes, + file_name="semantic_graph.png", + mime="image/png", + use_container_width=True + ) + + # Expandible con la interpretación + with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")): + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + + except Exception as e: + logger.error(f"Error displaying graph: {str(e)}") + st.error(semantic_t.get('graph_error', 'Error displaying the graph')) + else: + st.info(semantic_t.get('no_graph', 'No concept graph available')) + + +######################################################################################## +''' + # Botón de exportación al final + if 'semantic_analysis_counter' in st.session_state: + col1, col2, col3 = st.columns([2,1,2]) + with col2: + if st.button( + semantic_t.get('export_button', 'Export Analysis'), + key=f"semantic_export_{st.session_state.semantic_analysis_counter}", + use_container_width=True + ): + pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') + st.download_button( + label=semantic_t.get('download_pdf', 'Download PDF'), + data=pdf_buffer, + file_name="semantic_analysis.pdf", + mime="application/pdf", + key=f"semantic_download_{st.session_state.semantic_analysis_counter}" + ) +''' \ No newline at end of file diff --git a/modules/semantic/semantic_interfaceBackUp_2092024_1800.py b/modules/semantic/semantic_interfaceBackUp_2092024_1800.py new file mode 100644 index 0000000000000000000000000000000000000000..f9ef8533a44841e7fdcc66abd8b4c7a25b9e2914 --- /dev/null +++ b/modules/semantic/semantic_interfaceBackUp_2092024_1800.py @@ -0,0 +1,146 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload", "Analyze", "Results", "Chat", "Export"]) + + with tab1: + tab21, tab22 = st.tabs(["File Management", "File Analysis"]) + + with tab21: + st.subheader("Upload and Manage Files") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.write("No files uploaded yet.") + + with tab22: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + with tab2: + st.subheader("Analysis Results") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + col1, col2 = st.columns(2) + with col1: + if 'concept_graph' in st.session_state: + st.subheader("Concept Graph") + st.pyplot(st.session_state.concept_graph) + with col2: + if 'entity_graph' in st.session_state: + st.subheader("Entity Graph") + st.pyplot(st.session_state.entity_graph) + + with tab3: + st.subheader("Chat with AI") + chat_container = st.container() + + with chat_container: + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with tab4: + st.subheader("Export Results") + # Add export functionality here + + with tab5: + st.subheader("Help") + # Add help information here \ No newline at end of file diff --git a/modules/semantic/semantic_interfaceBorrados.py b/modules/semantic/semantic_interfaceBorrados.py new file mode 100644 index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c --- /dev/null +++ b/modules/semantic/semantic_interfaceBorrados.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") diff --git a/modules/semantic/semantic_interfaceKoKo.py b/modules/semantic/semantic_interfaceKoKo.py new file mode 100644 index 0000000000000000000000000000000000000000..3a704b30129e521564b9222face9ec5c818bafea --- /dev/null +++ b/modules/semantic/semantic_interfaceKoKo.py @@ -0,0 +1,239 @@ +import streamlit as st +from streamlit_float import * +import logging +import sys +import io +from io import BytesIO +from datetime import datetime +import re +import base64 +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import pandas as pd +import numpy as np + +from .flexible_analysis_handler import FlexibleAnalysisHandler + +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +from .semantic_process import process_semantic_analysis + +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + + +semantic_float_init() +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + + +## +def fig_to_base64(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' +## + + +def display_semantic_interface(lang_code, nlp_models, t): + #st.set_page_config(layout="wide") + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + + if 'graph_id' not in st.session_state: + st.session_state.graph_id = None + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + col1, col2 = st.columns([2, 1]) + + with col1: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in reversed(st.session_state.semantic_chat_history): + with st.chat_message(message["role"]): + st.markdown(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col2: + st.subheader("Document Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + logger.debug("Calling process_semantic_analysis") + analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code) + + # Crear una instancia de FlexibleAnalysisHandler con los resultados del análisis + handler = FlexibleAnalysisHandler(analysis_result) + + logger.debug(f"Type of analysis_result: {type(analysis_result)}") + logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}") + + st.session_state.concept_graph = handler.get_concept_graph() + st.session_state.entity_graph = handler.get_entity_graph() + st.session_state.key_concepts = handler.get_key_concepts() + st.session_state.show_graph = True + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("File Management") + + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + + st.subheader("Manage Uploaded Files") + + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + ######################################################################################################################### + # Floating graph visualization + if st.session_state.show_graph: + if st.session_state.graph_id is None: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + graph_id = st.session_state.graph_id + + if 'key_concepts' in st.session_state: + key_concepts_html = "

Key Concepts:

" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "

" + update_float_content(graph_id, key_concepts_html) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + update_float_content(graph_id, st.session_state.concept_graph) + else: + update_float_content(graph_id, "No concept graph available.") + + with tab_entity: + if 'entity_graph' in st.session_state: + update_float_content(graph_id, st.session_state.entity_graph) + else: + update_float_content(graph_id, "No entity graph available.") + + if st.button("Close Graph", key="close_graph"): + toggle_float_visibility(graph_id, False) + st.session_state.show_graph = False + st.session_state.graph_id = None + st.rerun() \ No newline at end of file diff --git a/modules/semantic/semantic_interfaceSideBar.py b/modules/semantic/semantic_interfaceSideBar.py new file mode 100644 index 0000000000000000000000000000000000000000..79f0777328d68330ea531f7104abbf8a4ab0fdfb --- /dev/null +++ b/modules/semantic/semantic_interfaceSideBar.py @@ -0,0 +1,207 @@ +import streamlit as st +from streamlit_float import * +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Sidebar for chat + with st.sidebar: + st.subheader("Chat with AI") + + messages = st.container(height=400) + + # Display chat messages + for message in st.session_state.semantic_chat_history: + with messages.chat_message(message["role"]): + st.markdown(message["content"]) + + # Chat input + if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')): + st.session_state.semantic_chat_history.append({"role": "user", "content": prompt}) + + with messages.chat_message("user"): + st.markdown(prompt) + + with messages.chat_message("assistant"): + message_placeholder = st.empty() + full_response = "" + + if prompt.startswith('/analyze_current'): + assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', '')) + + # Simulate stream of response with milliseconds delay + for chunk in assistant_response.split(): + full_response += chunk + " " + message_placeholder.markdown(full_response + "▌") + message_placeholder.markdown(full_response) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response}) + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + # Main content area + st.title("Semantic Analysis") + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Visualization + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_1.py b/modules/semantic/semantic_interface_1.py new file mode 100644 index 0000000000000000000000000000000000000000..29c22b3d1f16b0574cd5ad4b2cbd12d188b19784 --- /dev/null +++ b/modules/semantic/semantic_interface_1.py @@ -0,0 +1,55 @@ +import streamlit as st +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot +from ..database.database_oldFromV2 import store_semantic_result +from ..text_analysis.semantic_analysis import perform_semantic_analysis +from ..utils.widget_utils import generate_unique_key + +def display_semantic_interface(lang_code, nlp_models, t): + st.subheader(t['title']) + + # Inicializar el chatbot si no existe + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + # Sección para cargar archivo + uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt']) + if uploaded_file: + file_contents = uploaded_file.getvalue().decode('utf-8') + st.session_state.file_contents = file_contents + + # Mostrar el historial del chat + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualization" in message: + st.pyplot(message["visualization"]) + + # Input del usuario + user_input = st.chat_input(t['semantic_initial_message'], key=generate_unique_key('semantic', st.session_state.username)) + + if user_input: + # Procesar el input del usuario + response, visualization = process_semantic_analysis(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents'), t) + + # Actualizar el historial del chat + chat_history.append({"role": "user", "content": user_input}) + chat_history.append({"role": "assistant", "content": response, "visualization": visualization}) + st.session_state.semantic_chat_history = chat_history + + # Mostrar el resultado más reciente + with st.chat_message("assistant"): + st.write(response) + if visualization: + st.pyplot(visualization) + + # Guardar el resultado en la base de datos si es un análisis + if user_input.startswith('/analisis_semantico'): + result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) + store_semantic_result(st.session_state.username, st.session_state.file_contents, result) + + # Botón para limpiar el historial del chat + if st.button(t['clear_chat'], key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/modules/semantic/semantic_interface_2.py b/modules/semantic/semantic_interface_2.py new file mode 100644 index 0000000000000000000000000000000000000000..9b24e101d56541b3f533183b78dceda8f961880c --- /dev/null +++ b/modules/semantic/semantic_interface_2.py @@ -0,0 +1,167 @@ +import streamlit as st +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + #st.set_page_config(layout="wide") + + # Estilo CSS personalizado + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} +
+ """, unsafe_allow_html=True) + + # Inicializar el chatbot si no existe + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + # Contenedor para la gestión de archivos + with st.container(): + st.markdown('
', unsafe_allow_html=True) + col1, col2, col3, col4 = st.columns(4) + + with col1: + if st.button(get_translation(t, 'upload_file', 'Upload File'), key=generate_unique_key('semantic', 'upload_button')): + uploaded_file = st.file_uploader(get_translation(t, 'file_uploader', 'Choose a file'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved to database successfully')) + st.session_state.file_contents = file_contents + st.rerun() + else: + st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) + + with col2: + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_file', 'Select a file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox(get_translation(t, 'file_list', 'File List'), options=file_options, key=generate_unique_key('semantic', 'file_selector')) + if selected_file != get_translation(t, 'select_file', 'Select a file'): + if st.button(get_translation(t, 'load_file', 'Load File'), key=generate_unique_key('semantic', 'load_file')): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully')) + else: + st.error(get_translation(t, 'file_load_error', 'Error loading file')) + + with col3: + if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')): + if 'file_contents' in st.session_state: + with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')): + graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) + st.session_state.graph = graph + st.session_state.key_concepts = key_concepts + st.success(get_translation(t, 'analysis_completed', 'Analysis completed')) + else: + st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded')) + + with col4: + if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')): + if selected_file and selected_file != get_translation(t, 'select_file', 'Select a file'): + if delete_file(st.session_state.username, selected_file, 'semantic'): + st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully')) + if 'file_contents' in st.session_state: + del st.session_state.file_contents + st.rerun() + else: + st.error(get_translation(t, 'file_delete_error', 'Error deleting file')) + else: + st.error(get_translation(t, 'no_file_selected', 'No file selected')) + + st.markdown('
', unsafe_allow_html=True) + + # Crear dos columnas: una para el chat y otra para la visualización + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) + # Chat interface + chat_container = st.container() + + with chat_container: + # Mostrar el historial del chat + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + # Input del usuario + user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + # Añadir el mensaje del usuario al historial + chat_history.append({"role": "user", "content": user_input}) + + # Generar respuesta del chatbot + chatbot = st.session_state.semantic_chatbot + response = chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents')) + + # Añadir la respuesta del chatbot al historial + chat_history.append({"role": "assistant", "content": response}) + + # Actualizar el historial en session_state + st.session_state.semantic_chat_history = chat_history + + # Forzar la actualización de la interfaz + st.rerun() + + with col_graph: + st.subheader(get_translation(t, 'graph_title', 'Semantic Graph')) + + # Mostrar conceptos clave en un expander horizontal + with st.expander(get_translation(t, 'key_concepts_title', 'Key Concepts'), expanded=True): + if 'key_concepts' in st.session_state: + st.markdown('
', unsafe_allow_html=True) + for concept, freq in st.session_state.key_concepts: + st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + if 'graph' in st.session_state: + st.pyplot(st.session_state.graph) + + # Botón para limpiar el historial del chat + if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/modules/semantic/semantic_interface_2192024_1632.py b/modules/semantic/semantic_interface_2192024_1632.py new file mode 100644 index 0000000000000000000000000000000000000000..cd2aff2f6a40d46999fd4548dd5697dd09f16e80 --- /dev/null +++ b/modules/semantic/semantic_interface_2192024_1632.py @@ -0,0 +1,244 @@ +import streamlit as st +import logging +import time +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization --1 + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + # Create a container for the chat messages + chat_container = st.container() + + # Display chat messages from history on app rerun + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + +''' + # Accept user input + if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')): + # Add user message to chat history + st.session_state.semantic_chat_history.append({"role": "user", "content": prompt}) + # Display user message in chat message container + with st.chat_message("user"): + st.markdown(prompt) + + # Generate and display assistant response + with st.chat_message("assistant"): + message_placeholder = st.empty() + full_response = "" + + if prompt.startswith('/analyze_current'): + assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', '')) + + # Simulate stream of response with milliseconds delay + for chunk in assistant_response.split(): + full_response += chunk + " " + time.sleep(0.05) + # Add a blinking cursor to simulate typing + message_placeholder.markdown(full_response + "▌") + message_placeholder.markdown(full_response) + + # Add assistant response to chat history + st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response}) + + # Add a clear chat button + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [{"role": "assistant", "content": "Chat cleared. How can I assist you?"}] + st.rerun() + +''' + +''' + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") +''' \ No newline at end of file diff --git a/modules/semantic/semantic_interface_3.py b/modules/semantic/semantic_interface_3.py new file mode 100644 index 0000000000000000000000000000000000000000..b42b4101804f09c8cf78d9458a9c4ad20f2ece4d --- /dev/null +++ b/modules/semantic/semantic_interface_3.py @@ -0,0 +1,182 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f""" +
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} +
+ """, unsafe_allow_html=True) + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + # Contenedor para la gestión de archivos + with st.container(): + st.markdown('
', unsafe_allow_html=True) + col1, col2, col3, col4 = st.columns(4) + + with col1: + uploaded_file = st.file_uploader(get_translation(t, 'upload_file', 'Upload File'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully')) + st.rerun() + else: + st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) + + with col2: + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully')) + else: + st.error(get_translation(t, 'file_load_error', 'Error loading file')) + + with col3: + if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')): + if 'file_contents' in st.session_state: + with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success(get_translation(t, 'analysis_completed', 'Analysis completed')) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded')) + + with col4: + if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + if delete_file(st.session_state.username, selected_file, 'semantic'): + st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully')) + if 'file_contents' in st.session_state: + del st.session_state.file_contents + st.rerun() + else: + st.error(get_translation(t, 'file_delete_error', 'Error deleting file')) + else: + st.error(get_translation(t, 'no_file_selected', 'No file selected')) + + st.markdown('
', unsafe_allow_html=True) + + # Contenedor para la sección de análisis + st.markdown('
', unsafe_allow_html=True) + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) + chat_container = st.container() + + with chat_container: + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + with col_graph: + st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs')) + + # Mostrar conceptos clave y entidades horizontalmente + if 'key_concepts' in st.session_state: + st.write(get_translation(t, 'key_concepts_title', 'Key Concepts')) + st.markdown('
', unsafe_allow_html=True) + for concept, freq in st.session_state.key_concepts: + st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + if 'entities' in st.session_state: + st.write(get_translation(t, 'entities_title', 'Entities')) + st.markdown('
', unsafe_allow_html=True) + for entity, type in st.session_state.entities.items(): + st.markdown(f'{entity}: {type}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + # Usar pestañas para mostrar los gráficos + tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab1: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + + with tab2: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + + st.markdown('
', unsafe_allow_html=True) + + if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/modules/semantic/semantic_interface_4.py b/modules/semantic/semantic_interface_4.py new file mode 100644 index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5 --- /dev/null +++ b/modules/semantic/semantic_interface_4.py @@ -0,0 +1,188 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + st.markdown('
', unsafe_allow_html=True) + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + st.markdown('
', unsafe_allow_html=True) + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + st.markdown('
', unsafe_allow_html=True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_5.py b/modules/semantic/semantic_interface_5.py new file mode 100644 index 0000000000000000000000000000000000000000..b9c2c13e29ee1fe2b8048e233b65bcaaa02af6fc --- /dev/null +++ b/modules/semantic/semantic_interface_5.py @@ -0,0 +1,195 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Estilo CSS personalizado + st.markdown(""" + + """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_6.py b/modules/semantic/semantic_interface_6.py new file mode 100644 index 0000000000000000000000000000000000000000..6b9e483a32c03f1fc3dbf0a6aa2e65f71a284e35 --- /dev/null +++ b/modules/semantic/semantic_interface_6.py @@ -0,0 +1,223 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + + # Crear el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + # Actualizar el contenido del grafo flotante + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + + # Botón para cerrar el grafo flotante + if st.button("Close Graph", key="close_graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id \ No newline at end of file diff --git a/modules/semantic/semantic_interface_61.py b/modules/semantic/semantic_interface_61.py new file mode 100644 index 0000000000000000000000000000000000000000..a2ac1e16628009ab14da1eb7cf94c967a22805ea --- /dev/null +++ b/modules/semantic/semantic_interface_61.py @@ -0,0 +1,198 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + col_left, col_right = st.columns([1, 1]) + + with col_left: + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([2, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True)) + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_right: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_610.py b/modules/semantic/semantic_interface_610.py new file mode 100644 index 0000000000000000000000000000000000000000..7584017bdca599b7345e9728e5cdd887be94c885 --- /dev/null +++ b/modules/semantic/semantic_interface_610.py @@ -0,0 +1,186 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Crear o actualizar el elemento flotante con el grafo + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + st.session_state.graph_id = float_graph(graph_content, width="30%", height="80%", position="center-right", shadow=2) + st.session_state.graph_visible = True + + # Depuración: Mostrar los primeros 100 caracteres del grafo + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}") + st.write(f"Debug: Graph ID: {st.session_state.graph_id}") + + except Exception as e: + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + +# Al final del archivo, después de todo el código: +if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + components.html(f""" + + """, height=0) + +# Añadir un botón para alternar la visibilidad del grafo +if st.button("Toggle Graph Visibility"): + st.session_state.graph_visible = not st.session_state.get('graph_visible', False) + if st.session_state.graph_visible: + st.write("Graph should be visible now") + else: + st.write("Graph should be hidden now") + st.experimental_rerun() \ No newline at end of file diff --git a/modules/semantic/semantic_interface_62.py b/modules/semantic/semantic_interface_62.py new file mode 100644 index 0000000000000000000000000000000000000000..2cf56020a9772617f5f09a69450887c7e50614a8 --- /dev/null +++ b/modules/semantic/semantic_interface_62.py @@ -0,0 +1,206 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + col_left, col_right = st.columns([3, 2]) + + with col_left: + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Crear o actualizar el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + if st.session_state.semantic_chat_history: + if st.button("Do you want to export the analysis before clearing?"): + # Aquí puedes implementar la lógica para exportar el análisis + st.success("Analysis exported successfully") + st.session_state.semantic_chat_history = [] + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + st.rerun() + + with col_right: + st.subheader("Visualization") + if 'key_concepts' in st.session_state and st.session_state.key_concepts: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_63.py b/modules/semantic/semantic_interface_63.py new file mode 100644 index 0000000000000000000000000000000000000000..c32cf8d098b8ffb30163db19deef434fb2653d50 --- /dev/null +++ b/modules/semantic/semantic_interface_63.py @@ -0,0 +1,215 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + # Barra de progreso + progress_bar = st.progress(0) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + col_left, col_right = st.columns([2, 3]) # Invertimos las proporciones + + with col_left: + st.subheader("File Selection and Chat") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + progress_bar.progress(10) + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + progress_bar.progress(30) + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + progress_bar.progress(70) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + progress_bar.progress(100) + st.success("Analysis completed successfully") + + # Crear o actualizar el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + finally: + progress_bar.empty() + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + if st.session_state.semantic_chat_history: + if st.button("Do you want to export the analysis before clearing?"): + # Aquí puedes implementar la lógica para exportar el análisis + st.success("Analysis exported successfully") + st.session_state.semantic_chat_history = [] + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + st.rerun() + + with col_right: + st.subheader("Visualization") + if 'key_concepts' in st.session_state and st.session_state.key_concepts: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_64.py b/modules/semantic/semantic_interface_64.py new file mode 100644 index 0000000000000000000000000000000000000000..731678c700b81bdb8043dfa75ef875544ef44860 --- /dev/null +++ b/modules/semantic/semantic_interface_64.py @@ -0,0 +1,170 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el grafo flotante + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="40%", height="60%", position="top-right") + else: + update_float_content(st.session_state.graph_id, graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Botón para alternar la visibilidad del grafo flotante + if 'graph_id' in st.session_state: + if st.button("Toggle Graph Visibility"): + toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True)) + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_65.py b/modules/semantic/semantic_interface_65.py new file mode 100644 index 0000000000000000000000000000000000000000..6ea2f629e954c34ed7407e1d06241dc5040f1879 --- /dev/null +++ b/modules/semantic/semantic_interface_65.py @@ -0,0 +1,176 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el grafo flotante + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="40%", height="auto", position="center-right") + else: + update_float_content(st.session_state.graph_id, graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_66.py b/modules/semantic/semantic_interface_66.py new file mode 100644 index 0000000000000000000000000000000000000000..cfa57fb062f09215e606e80cdbe9dfdacfcda759 --- /dev/null +++ b/modules/semantic/semantic_interface_66.py @@ -0,0 +1,186 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="40%", height="auto", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_67.py b/modules/semantic/semantic_interface_67.py new file mode 100644 index 0000000000000000000000000000000000000000..952286e515d0b2aaded7d0e4ae21e5d4f6de8115 --- /dev/null +++ b/modules/semantic/semantic_interface_67.py @@ -0,0 +1,189 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_68.py b/modules/semantic/semantic_interface_68.py new file mode 100644 index 0000000000000000000000000000000000000000..7d76233b4405d8e141d906c75f98c4cba2cb822e --- /dev/null +++ b/modules/semantic/semantic_interface_68.py @@ -0,0 +1,195 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Aquí cambiamos el contenido del elemento flotante para mostrar un video de YouTube + youtube_video_id = "dQw4w9WgXcQ" # Cambia esto por el ID del video que quieras mostrar + video_content = f""" + + """ + st.session_state.graph_id = float_graph(video_content, width="800px", height="600px", position="center-right") + st.session_state.graph_visible = True + st.session_state.graph_content = video_content + + # Log para depuración + st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}") + st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}") + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_681.py b/modules/semantic/semantic_interface_681.py new file mode 100644 index 0000000000000000000000000000000000000000..9384c9f712a4145c14d5d43a1657e11e92cbeaea --- /dev/null +++ b/modules/semantic/semantic_interface_681.py @@ -0,0 +1,165 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + col1, col2 = st.columns([3, 1]) + with col1: + analyze_button = st.button("Analyze Document") + with col2: + toggle_graph = st.checkbox("Show Graph", value=st.session_state.graph_visible) + + if analyze_button: + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + float_graph(graph_content) + st.session_state.graph_visible = True + toggle_float_visibility(True) + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + if toggle_graph != st.session_state.graph_visible: + st.session_state.graph_visible = toggle_graph + toggle_float_visibility(toggle_graph) + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible si está activado + if st.session_state.graph_visible: + toggle_float_visibility(True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_681_23-9-24.py b/modules/semantic/semantic_interface_681_23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..69477b49cf6dd9be21b06e330813aa2fe274e3ec --- /dev/null +++ b/modules/semantic/semantic_interface_681_23-9-24.py @@ -0,0 +1,222 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right") + st.write(f"New graph created with ID: {st.session_state.graph_id}") + else: + update_float_content(st.session_state.graph_id, graph_content) + st.write(f"Existing graph updated with ID: {st.session_state.graph_id}") + + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + + # Depuración + st.write(f"Debug: Graph ID: {st.session_state.graph_id}") + st.write(f"Debug: Graph visible: {st.session_state.graph_visible}") + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}") + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2, col3 = st.columns([3, 1, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Añadir botones para controlar el elemento flotante + col1, col2 = st.columns(2) + with col1: + if st.button("Show Graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + st.write(f"Showing graph with ID: {st.session_state.graph_id}") + else: + st.write("No graph available to show") + + with col2: + if st.button("Hide Graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + st.session_state.graph_visible = False + st.write(f"Hiding graph with ID: {st.session_state.graph_id}") + else: + st.write("No graph available to hide") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_68ok copy.py b/modules/semantic/semantic_interface_68ok copy.py new file mode 100644 index 0000000000000000000000000000000000000000..fc16cf6f6c19e45753d432af4e13c32f5880841a --- /dev/null +++ b/modules/semantic/semantic_interface_68ok copy.py @@ -0,0 +1,215 @@ +import streamlit as st +import streamlit_float +import streamlit_option_menu +import streamlit_antd_components +import streamlit.components.v1 as components +import streamlit.components.v1 as stc +import logging +from .semantic_process import * +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float68ok import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + if concept_graph_base64: + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right") + st.session_state.graph_visible = True + st.session_state.graph_content = graph_content + + if entity_graph_base64: + entity_graph_content = f""" +

Entity Graph:

+ Entity Graph + """ + st.session_state.entity_graph_id = float_graph(entity_graph_content, width="800px", height="600px", position="bottom-left") + + # Log para depuración + st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}") + st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}") + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph_base64[:100]}") + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2, col3 = st.columns([3, 1, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + +# Asegurarse de que el grafo flotante permanezca visible después de las interacciones +if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + +# Mostrar el grafo flotante si está visible +if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + components.html( + f""" +
+ {st.session_state.graph_content} +
+ """, + height=600, + scrolling=True + ) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_68ok.py b/modules/semantic/semantic_interface_68ok.py new file mode 100644 index 0000000000000000000000000000000000000000..8a34d56f794a81dca38b251a21fba4ca16b5a6ad --- /dev/null +++ b/modules/semantic/semantic_interface_68ok.py @@ -0,0 +1,98 @@ +import streamlit as st +import logging +from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + + + +def display_semantic_interface(lang_code, nlp_models, t): + st.subheader(t['semantic_title']) + + text_input = st.text_area( + t['warning_message'], + height=150, + key=generate_unique_key("semantic", "text_area") + ) + + if st.button( + t['results_title'], + key=generate_unique_key("semantic", "analyze_button") + ): + if text_input: + # Aquí iría tu lógica de análisis morfosintáctico + # Por ahora, solo mostraremos un mensaje de placeholder + st.info(t['analysis_placeholder']) + else: + st.warning(t['no_text_warning']) + + +''' +def display_semantic_interface(lang_code, nlp_models, t): + st.title("Semantic Analysis") + + tab1, tab2 = st.tabs(["File Management", "Analysis"]) + + with tab1: + display_file_management(lang_code, t) + + with tab2: + # Aquí irá el código para el análisis semántico (lo implementaremos después) + st.write("Semantic analysis section will be implemented here.") + +def display_file_management(lang_code, t): + st.header("File Management") + + # File Upload Section + st.subheader("Upload New File") + uploaded_file = st.file_uploader( + "Choose a file to upload", + type=['txt', 'pdf', 'docx', 'doc', 'odt'], + key=generate_unique_key('semantic', 'file_uploader') + ) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents, 'semantic'): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + + + # File Management Section + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + try: + logger.info(f"Attempting to delete file: {file['file_name']} for user: {st.session_state.username}") + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + logger.info(f"File {file['file_name']} deleted successfully for user: {st.session_state.username}") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + logger.error(f"Failed to delete file {file['file_name']} for user: {st.session_state.username}") + except Exception as e: + st.error(f"An error occurred while deleting file {file['file_name']}: {str(e)}") + logger.exception(f"Exception occurred while deleting file {file['file_name']} for user: {st.session_state.username}") + + else: + st.info("No files uploaded yet.") + +if __name__ == "__main__": + # This is just for testing purposes + class MockTranslation(dict): + def __getitem__(self, key): + return key + + display_semantic_interface('en', {}, MockTranslation()) + + ''' \ No newline at end of file diff --git a/modules/semantic/semantic_interface_68okBackUp.py b/modules/semantic/semantic_interface_68okBackUp.py new file mode 100644 index 0000000000000000000000000000000000000000..a8d8eaeafca312b1fa3d6ef2fc81bf2bf7a844ad --- /dev/null +++ b/modules/semantic/semantic_interface_68okBackUp.py @@ -0,0 +1,209 @@ +import streamlit as st +import streamlit.components.v1 as components +import streamlit.components.v1 as stc +import logging +from .semantic_process import * +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float68ok import * + +concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2, col3 = st.columns([3, 1, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_69.py b/modules/semantic/semantic_interface_69.py new file mode 100644 index 0000000000000000000000000000000000000000..9491c4a0cd7e20c82eeb3bed69d2f3417e92e1d4 --- /dev/null +++ b/modules/semantic/semantic_interface_69.py @@ -0,0 +1,167 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Crear o actualizar el elemento flotante con el grafo + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, graph_content) + + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + + # Depuración: Mostrar el grafo directamente en la interfaz + #st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_6_Ok-23-9-24.py b/modules/semantic/semantic_interface_6_Ok-23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..c56fcc1da26f832d7e3e5037453ed17469943284 --- /dev/null +++ b/modules/semantic/semantic_interface_6_Ok-23-9-24.py @@ -0,0 +1,223 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + + # Crear el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + # Actualizar el contenido del grafo flotante + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + + # Botón para cerrar el grafo flotante + if st.button("Close Graph", key="close_graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id \ No newline at end of file diff --git a/modules/semantic/semantic_interface_6_StarPoint.py b/modules/semantic/semantic_interface_6_StarPoint.py new file mode 100644 index 0000000000000000000000000000000000000000..128c21dd4422f723c9b35a7484ab0b2af79f69d2 --- /dev/null +++ b/modules/semantic/semantic_interface_6_StarPoint.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2 = st.columns([3, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_7.py b/modules/semantic/semantic_interface_7.py new file mode 100644 index 0000000000000000000000000000000000000000..26893a836e36378aad6d6fbc4a259bb7a9126b22 --- /dev/null +++ b/modules/semantic/semantic_interface_7.py @@ -0,0 +1,201 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git "a/modules/semantic/semantic_interface_Despu\303\251s.py" "b/modules/semantic/semantic_interface_Despu\303\251s.py" new file mode 100644 index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe --- /dev/null +++ "b/modules/semantic/semantic_interface_Despu\303\251s.py" @@ -0,0 +1,116 @@ +import streamlit as st +import logging +from io import BytesIO +import base64 +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import ( + initialize_mongodb_connection, + initialize_database_connections, + create_admin_user, + create_student_user, + get_user, + get_student_data, + store_file_contents, + retrieve_file_contents, + get_user_files, + delete_file, + store_application_request, + store_user_feedback, + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + export_analysis_and_chat, + get_user_analysis_summary, + get_user_recents_chats, + get_user_analysis_details + ) + +from ..utils.widget_utils import generate_unique_key +from .flexible_analysis_handler import FlexibleAnalysisHandler + +semantic_float_init() +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def fig_to_base64(fig): + buf = BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' + +def display_semantic_interface(lang_code, nlp_models, t): + st.set_page_config(layout="wide") + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + if 'graph_id' not in st.session_state: + st.session_state.graph_id = None + + st.header(t['title']) + + # Opción para introducir texto + text_input = st.text_area( + t['text_input_label'], + height=150, + placeholder=t['text_input_placeholder'], + ) + + # Opción para cargar archivo + uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) + + if st.button(t['analyze_button']): + if text_input or uploaded_file is not None: + if uploaded_file: + text_content = uploaded_file.getvalue().decode('utf-8') + else: + text_content = text_input + + # Realizar el análisis + analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code) + + # Guardar el resultado en el estado de la sesión + st.session_state.semantic_result = analysis_result + + # Mostrar resultados + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + # Guardar el resultado del análisis + if store_semantic_result(st.session_state.username, text_content, analysis_result): + st.success(t['success_message']) + else: + st.error(t['error_message']) + else: + st.warning(t['warning_message']) + + elif 'semantic_result' in st.session_state: + + # Si hay un resultado guardado, mostrarlo + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + else: + st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones + +def display_semantic_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones + return + + # Mostrar conceptos clave + with st.expander(t['key_concepts'], expanded=True): + concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) + st.write(concept_text) + + # Mostrar el gráfico de relaciones conceptuales + with st.expander(t['conceptual_relations'], expanded=True): + st.pyplot(result['relations_graph']) diff --git a/modules/semantic/semantic_interface_StreamLitChat.py b/modules/semantic/semantic_interface_StreamLitChat.py new file mode 100644 index 0000000000000000000000000000000000000000..e0eb527289912cd0295833c4e93cd2e91bd3b6d2 --- /dev/null +++ b/modules/semantic/semantic_interface_StreamLitChat.py @@ -0,0 +1,157 @@ +import streamlit as st +import logging +from streamlit_chat import message +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'messages' not in st.session_state: + st.session_state.messages = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + + st.title("Semantic Analysis") + + # Crear dos columnas principales: una para el chat y otra para la visualización + chat_col, viz_col = st.columns([1, 1]) + + with chat_col: + st.subheader("Chat with AI") + + # Contenedor para los mensajes del chat + chat_container = st.container() + + # Input para el chat + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + # Añadir mensaje del usuario + st.session_state.messages.append({"role": "user", "content": user_input}) + + # Generar respuesta del asistente + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + # Añadir respuesta del asistente + st.session_state.messages.append({"role": "assistant", "content": response}) + + # Mostrar mensajes en el contenedor del chat + with chat_container: + for i, msg in enumerate(st.session_state.messages): + message(msg['content'], is_user=msg['role'] == 'user', key=f"{i}_{msg['role']}") + + # Botón para limpiar el chat + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.messages = [] + st.rerun() + + with viz_col: + st.subheader("Visualization") + + # Selector de archivo y botón de análisis + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Visualización de conceptos clave + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + # Pestañas para los gráficos + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + + # Sección de carga de archivos + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + + # Gestión de archivos cargados + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_Test.py b/modules/semantic/semantic_interface_Test.py new file mode 100644 index 0000000000000000000000000000000000000000..435d574d8c6ff1b985807249e9a02061e0bd4a54 --- /dev/null +++ b/modules/semantic/semantic_interface_Test.py @@ -0,0 +1,22 @@ +import streamlit as st +from streamlit_float import * + +# Limpiar el caché al inicio +st.cache_data.clear() +st.cache_resource.clear() + + +# initialize float feature/capability +float_init() + +col1, col2 = st.columns(2) + +# Fix/float the whole column +col1.write("This entire column is fixed/floating") +col1.float() + +with col2: + container = st.container() + # Fix/float a single container inside + container.write("This text is in a container that is fixed") + container.float() \ No newline at end of file diff --git a/modules/semantic/semantic_interface_afterParty.py b/modules/semantic/semantic_interface_afterParty.py new file mode 100644 index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe --- /dev/null +++ b/modules/semantic/semantic_interface_afterParty.py @@ -0,0 +1,116 @@ +import streamlit as st +import logging +from io import BytesIO +import base64 +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import ( + initialize_mongodb_connection, + initialize_database_connections, + create_admin_user, + create_student_user, + get_user, + get_student_data, + store_file_contents, + retrieve_file_contents, + get_user_files, + delete_file, + store_application_request, + store_user_feedback, + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + export_analysis_and_chat, + get_user_analysis_summary, + get_user_recents_chats, + get_user_analysis_details + ) + +from ..utils.widget_utils import generate_unique_key +from .flexible_analysis_handler import FlexibleAnalysisHandler + +semantic_float_init() +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def fig_to_base64(fig): + buf = BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' + +def display_semantic_interface(lang_code, nlp_models, t): + st.set_page_config(layout="wide") + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + if 'graph_id' not in st.session_state: + st.session_state.graph_id = None + + st.header(t['title']) + + # Opción para introducir texto + text_input = st.text_area( + t['text_input_label'], + height=150, + placeholder=t['text_input_placeholder'], + ) + + # Opción para cargar archivo + uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) + + if st.button(t['analyze_button']): + if text_input or uploaded_file is not None: + if uploaded_file: + text_content = uploaded_file.getvalue().decode('utf-8') + else: + text_content = text_input + + # Realizar el análisis + analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code) + + # Guardar el resultado en el estado de la sesión + st.session_state.semantic_result = analysis_result + + # Mostrar resultados + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + # Guardar el resultado del análisis + if store_semantic_result(st.session_state.username, text_content, analysis_result): + st.success(t['success_message']) + else: + st.error(t['error_message']) + else: + st.warning(t['warning_message']) + + elif 'semantic_result' in st.session_state: + + # Si hay un resultado guardado, mostrarlo + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + else: + st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones + +def display_semantic_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones + return + + # Mostrar conceptos clave + with st.expander(t['key_concepts'], expanded=True): + concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) + st.write(concept_text) + + # Mostrar el gráfico de relaciones conceptuales + with st.expander(t['conceptual_relations'], expanded=True): + st.pyplot(result['relations_graph']) diff --git a/modules/semantic/semantic_interface_backup2092024_1930 copy.py b/modules/semantic/semantic_interface_backup2092024_1930 copy.py new file mode 100644 index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5 --- /dev/null +++ b/modules/semantic/semantic_interface_backup2092024_1930 copy.py @@ -0,0 +1,188 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + st.markdown('
', unsafe_allow_html=True) + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + st.markdown('
', unsafe_allow_html=True) + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + st.markdown('
', unsafe_allow_html=True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_backup2092024_1930.py b/modules/semantic/semantic_interface_backup2092024_1930.py new file mode 100644 index 0000000000000000000000000000000000000000..3d97ce833c0da8a58ea642ca760ba50503b998a9 --- /dev/null +++ b/modules/semantic/semantic_interface_backup2092024_1930.py @@ -0,0 +1,192 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .flexible_analysis_handler import FlexibleAnalysisHandler # Añade esta línea + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code) + + handler = FlexibleAnalysisHandler(analysis_result) + + st.session_state.concept_graph = handler.get_concept_graph() + st.session_state.entity_graph = handler.get_entity_graph() + st.session_state.key_concepts = handler.get_key_concepts() + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + st.markdown('
', unsafe_allow_html=True) + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + st.markdown('
', unsafe_allow_html=True) + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + st.markdown('
', unsafe_allow_html=True) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_backup_2092024.py b/modules/semantic/semantic_interface_backup_2092024.py new file mode 100644 index 0000000000000000000000000000000000000000..549e15f8d5e26c1ecfbe0bff01c05f539da7a296 --- /dev/null +++ b/modules/semantic/semantic_interface_backup_2092024.py @@ -0,0 +1,165 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f""" +
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} +
+ """, unsafe_allow_html=True) + + # File management container + st.markdown('
', unsafe_allow_html=True) + col1, col2, col3, col4 = st.columns(4) + + with col1: + if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')): + st.session_state.show_uploader = True + + with col2: + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + with col3: + analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')) + + with col4: + delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file')) + + st.markdown('
', unsafe_allow_html=True) + + # File uploader (hidden by default) + if st.session_state.get('show_uploader', False): + uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully')) + st.session_state.show_uploader = False # Hide uploader after successful upload + else: + st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) + + + # Contenedor para la sección de análisis + st.markdown('
', unsafe_allow_html=True) + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) + chat_container = st.container() + + with chat_container: + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + with col_graph: + st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs')) + + # Mostrar conceptos clave y entidades horizontalmente + if 'key_concepts' in st.session_state: + st.write(get_translation(t, 'key_concepts_title', 'Key Concepts')) + st.markdown('
', unsafe_allow_html=True) + for concept, freq in st.session_state.key_concepts: + st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + if 'entities' in st.session_state: + st.write(get_translation(t, 'entities_title', 'Entities')) + st.markdown('
', unsafe_allow_html=True) + for entity, type in st.session_state.entities.items(): + st.markdown(f'{entity}: {type}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + # Usar pestañas para mostrar los gráficos + tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab1: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + + with tab2: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + + st.markdown('
', unsafe_allow_html=True) + + if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/modules/semantic/semantic_interface_backup_2192024_1230.py b/modules/semantic/semantic_interface_backup_2192024_1230.py new file mode 100644 index 0000000000000000000000000000000000000000..241407616ae3ce590be4cb7268b82eef2325d8a8 --- /dev/null +++ b/modules/semantic/semantic_interface_backup_2192024_1230.py @@ -0,0 +1,194 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_chatforup.py b/modules/semantic/semantic_interface_chatforup.py new file mode 100644 index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c --- /dev/null +++ b/modules/semantic/semantic_interface_chatforup.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_stcontainerforchat.py b/modules/semantic/semantic_interface_stcontainerforchat.py new file mode 100644 index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c --- /dev/null +++ b/modules/semantic/semantic_interface_stcontainerforchat.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/modules/semantic/semantic_interface_test610.py b/modules/semantic/semantic_interface_test610.py new file mode 100644 index 0000000000000000000000000000000000000000..4ae439ec0086c3baa0bc74374358a81e8f865135 --- /dev/null +++ b/modules/semantic/semantic_interface_test610.py @@ -0,0 +1,212 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +#from .semantic_float import semantic_float_init, float_graph, toggle_float_visibility, update_float_content +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Depuración: Mostrar los primeros 100 caracteres del grafo + logger.debug(f"Concept graph base64 (first 100 chars): {concept_graph[:100]}") + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + + # Depuración: Verificar si el grafo se está creando + logger.debug(f"Graph ID: {st.session_state.graph_id}") + logger.debug(f"Graph visible: {st.session_state.graph_visible}") + + # Mostrar el grafo directamente en la interfaz para verificación + st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/modules/semantic/semantic_interface_vOk.py b/modules/semantic/semantic_interface_vOk.py new file mode 100644 index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c --- /dev/null +++ b/modules/semantic/semantic_interface_vOk.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") diff --git a/modules/semantic/semantic_live_interface.py b/modules/semantic/semantic_live_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..d4251d304deda779ea88a7d1a8c784317b58db31 --- /dev/null +++ b/modules/semantic/semantic_live_interface.py @@ -0,0 +1,197 @@ +# modules/semantic/semantic_live_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +import pandas as pd +import logging + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +from ..utils.widget_utils import generate_unique_key +from ..database.semantic_mongo_db import store_student_semantic_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +def display_semantic_live_interface(lang_code, nlp_models, semantic_t): + """ + Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas + """ + try: + # 1. Inicializar el estado de la sesión de manera más robusta + if 'semantic_live_state' not in st.session_state: + st.session_state.semantic_live_state = { + 'analysis_count': 0, + 'current_text': '', + 'last_result': None, + 'text_changed': False + } + + # 2. Función para manejar cambios en el texto + def on_text_change(): + current_text = st.session_state.semantic_live_text + st.session_state.semantic_live_state['current_text'] = current_text + st.session_state.semantic_live_state['text_changed'] = True + + # 3. Crear columnas con nueva proporción (1:3) + input_col, result_col = st.columns([1, 3]) + + # Columna izquierda: Entrada de texto + with input_col: + st.subheader(semantic_t.get('enter_text', 'Ingrese su texto')) + + # Área de texto con manejo de eventos + text_input = st.text_area( + semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'), + height=500, + key="semantic_live_text", + value=st.session_state.semantic_live_state.get('current_text', ''), + on_change=on_text_change, + label_visibility="collapsed" # Oculta el label para mayor estabilidad + ) + + # Botón de análisis y procesamiento + analyze_button = st.button( + semantic_t.get('analyze_button', 'Analizar'), + key="semantic_live_analyze", + type="primary", + icon="🔍", + disabled=not text_input, + use_container_width=True + ) + + if analyze_button and text_input: + try: + with st.spinner(semantic_t.get('processing', 'Procesando...')): + analysis_result = process_semantic_input( + text_input, + lang_code, + nlp_models, + semantic_t + ) + + if analysis_result['success']: + st.session_state.semantic_live_state['last_result'] = analysis_result + st.session_state.semantic_live_state['analysis_count'] += 1 + st.session_state.semantic_live_state['text_changed'] = False + + store_student_semantic_result( + st.session_state.username, + text_input, + analysis_result['analysis'] + ) + else: + st.error(analysis_result.get('message', 'Error en el análisis')) + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(semantic_t.get('error_processing', 'Error al procesar el texto')) + + # Columna derecha: Visualización de resultados + with result_col: + st.subheader(semantic_t.get('live_results', 'Resultados en vivo')) + + if 'last_result' in st.session_state.semantic_live_state and \ + st.session_state.semantic_live_state['last_result'] is not None: + + analysis = st.session_state.semantic_live_state['last_result']['analysis'] + + if 'key_concepts' in analysis and analysis['key_concepts'] and \ + 'concept_graph' in analysis and analysis['concept_graph'] is not None: + + st.markdown(""" + + """, unsafe_allow_html=True) + + with st.container(): + # Conceptos en una sola línea + concepts_html = """ +
+
+ """ + concepts_html += ''.join( + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in analysis['key_concepts'] + ) + concepts_html += "
" + st.markdown(concepts_html, unsafe_allow_html=True) + + # Grafo + if 'concept_graph' in analysis and analysis['concept_graph'] is not None: + st.image( + analysis['concept_graph'], + use_container_width=True + ) + + # Botones y controles + button_col, spacer_col = st.columns([1,5]) + with button_col: + st.download_button( + label="📥 " + semantic_t.get('download_graph', "Download"), + data=analysis['concept_graph'], + file_name="semantic_live_graph.png", + mime="image/png", + use_container_width=True + ) + + with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")): + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + else: + st.info(semantic_t.get('no_graph', 'No hay datos para mostrar')) + + except Exception as e: + logger.error(f"Error general en interfaz semántica en vivo: {str(e)}") + st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + diff --git a/modules/semantic/semantic_process.py b/modules/semantic/semantic_process.py new file mode 100644 index 0000000000000000000000000000000000000000..421dc7fc03afc4d71f1bcdf485ea054bd6972e6a --- /dev/null +++ b/modules/semantic/semantic_process.py @@ -0,0 +1,108 @@ +# modules/semantic/semantic_process.py +import streamlit as st +import matplotlib.pyplot as plt +import io +import base64 +import logging + +from ..text_analysis.semantic_analysis import ( + perform_semantic_analysis, + identify_key_concepts, + create_concept_graph, + visualize_concept_graph +) +from ..database.semantic_mongo_db import store_student_semantic_result + +logger = logging.getLogger(__name__) + +def process_semantic_input(text, lang_code, nlp_models, t): + """ + Procesa el texto ingresado para realizar el análisis semántico. + """ + try: + logger.info(f"Iniciando análisis semántico para texto de {len(text)} caracteres") + + # Realizar el análisis semántico + nlp = nlp_models[lang_code] + analysis_result = perform_semantic_analysis(text, nlp, lang_code) + + if not analysis_result['success']: + return { + 'success': False, + 'message': analysis_result['error'], + 'analysis': None + } + + logger.info("Análisis semántico completado. Guardando resultados...") + + # Intentar guardar en la base de datos + try: + store_result = store_student_semantic_result( + st.session_state.username, + text, + analysis_result + ) + if not store_result: + logger.warning("No se pudo guardar el análisis en la base de datos") + except Exception as db_error: + logger.error(f"Error al guardar en base de datos: {str(db_error)}") + + # Devolver el resultado incluso si falla el guardado + return { + 'success': True, + 'message': t.get('success_message', 'Analysis completed successfully'), + 'analysis': { + 'key_concepts': analysis_result['key_concepts'], + 'concept_graph': analysis_result['concept_graph'] + } + } + + except Exception as e: + logger.error(f"Error en process_semantic_input: {str(e)}") + return { + 'success': False, + 'message': str(e), + 'analysis': None + } + +def format_semantic_results(analysis_result, t): + """ + Formatea los resultados del análisis para su visualización. + """ + try: + if not analysis_result['success']: + return { + 'formatted_text': analysis_result['message'], + 'visualizations': None + } + + formatted_sections = [] + analysis = analysis_result['analysis'] + + # Formatear conceptos clave + if 'key_concepts' in analysis: + concepts_section = [f"### {t.get('key_concepts', 'Key Concepts')}"] + concepts_section.extend([ + f"- {concept}: {frequency:.2f}" + for concept, frequency in analysis['key_concepts'] + ]) + formatted_sections.append('\n'.join(concepts_section)) + + return { + 'formatted_text': '\n\n'.join(formatted_sections), + 'visualizations': { + 'concept_graph': analysis.get('concept_graph') + } + } + + except Exception as e: + logger.error(f"Error en format_semantic_results: {str(e)}") + return { + 'formatted_text': str(e), + 'visualizations': None + } + +__all__ = [ + 'process_semantic_input', + 'format_semantic_results' +] \ No newline at end of file diff --git a/modules/semantic/semantic_process_23-9-24.py b/modules/semantic/semantic_process_23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..6f3a7adb62c8f15ccd4616fd3e4b20beddf33be3 --- /dev/null +++ b/modules/semantic/semantic_process_23-9-24.py @@ -0,0 +1,62 @@ +import logging +import io +import base64 +import matplotlib.pyplot as plt +from ..text_analysis.semantic_analysis import perform_semantic_analysis +from .flexible_analysis_handler import FlexibleAnalysisHandler + +logger = logging.getLogger(__name__) + +def encode_image_to_base64(image_data): + if isinstance(image_data, str): # Si es una ruta de archivo + with open(image_data, "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()).decode("utf-8") + elif isinstance(image_data, bytes): # Si son datos de imagen en memoria + encoded_string = base64.b64encode(image_data).decode("utf-8") + else: + raise ValueError("Invalid image data type. Expected string (file path) or bytes.") + return encoded_string # + +def process_semantic_analysis(file_contents, nlp_model, lang_code): + logger.info(f"Starting semantic analysis processing for language: {lang_code}") + try: + result = perform_semantic_analysis(file_contents, nlp_model, lang_code) + #handler = FlexibleAnalysisHandler(result) + + #concept_graph = handler.get_graph('concept_graph') + #entity_graph = handler.get_graph('entity_graph') + #key_concepts = handler.get_key_concepts() + + concept_graph = result['concept_graph'] + entity_graph = result['entity_graph'] + key_concepts = result['key_concepts'] + + # Convertir los gráficos a base64 + concept_graph_base64 = fig_to_base64(concept_graph) if concept_graph else None + entity_graph_base64 = fig_to_base64(entity_graph) if entity_graph else None + + logger.info("Semantic analysis processing completed successfully") + return concept_graph_base64, entity_graph_base64, key_concepts + except Exception as e: + logger.error(f"Error in semantic analysis processing: {str(e)}") + return None, None, [] # Retorna valores vacíos en caso de error + +''' +logger = logging.getLogger(__name__) +logging.basicConfig(level=logging.DEBUG) + +def process_semantic_analysis(file_contents, nlp_model, lang_code): + logger.info(f"Starting semantic analysis for language: {lang_code}") + try: + logger.debug("Calling perform_semantic_analysis") + result = perform_semantic_analysis(file_contents, nlp_model, lang_code) + logger.debug(f"Result keys: {result.keys()}") + logger.debug(f"Type of concept_graph: {type(result['concept_graph'])}") + logger.debug(f"Type of entity_graph: {type(result['entity_graph'])}") + logger.debug(f"Number of key_concepts: {len(result['key_concepts'])}") + logger.info("Semantic analysis completed successfully") + return result['concept_graph'], result['entity_graph'], result['key_concepts'] + except Exception as e: + logger.error(f"Error in semantic analysis: {str(e)}") + raise +''' \ No newline at end of file diff --git a/modules/studentact/6-3-2025_current_situation_interface.py b/modules/studentact/6-3-2025_current_situation_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..d0a081ebd3cbb0846071b7ff68bfb5ee5c1e075a --- /dev/null +++ b/modules/studentact/6-3-2025_current_situation_interface.py @@ -0,0 +1,486 @@ +# modules/studentact/current_situation_interface-vOK.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np +from ..database.current_situation_mongo_db import store_current_situation_result + +# Importaciones locales +from translations import get_translations + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, + generate_recommendations +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) +#################################### + +TEXT_TYPES = { + 'academic_article': { + 'name': 'Artículo Académico', + 'thresholds': { + 'vocabulary': {'min': 0.70, 'target': 0.85}, + 'structure': {'min': 0.75, 'target': 0.90}, + 'cohesion': {'min': 0.65, 'target': 0.80}, + 'clarity': {'min': 0.70, 'target': 0.85} + } + }, + 'student_essay': { + 'name': 'Trabajo Universitario', + 'thresholds': { + 'vocabulary': {'min': 0.60, 'target': 0.75}, + 'structure': {'min': 0.65, 'target': 0.80}, + 'cohesion': {'min': 0.55, 'target': 0.70}, + 'clarity': {'min': 0.60, 'target': 0.75} + } + }, + 'general_communication': { + 'name': 'Comunicación General', + 'thresholds': { + 'vocabulary': {'min': 0.50, 'target': 0.65}, + 'structure': {'min': 0.55, 'target': 0.70}, + 'cohesion': {'min': 0.45, 'target': 0.60}, + 'clarity': {'min': 0.50, 'target': 0.65} + } + } +} +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada con gráfico de radar para visualizar métricas. + """ + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'text_area' not in st.session_state: # Añadir inicialización de text_area + st.session_state.text_area = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + try: + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + # Función para manejar cambios de texto + if text_input != st.session_state.text_input: + st.session_state.text_input = text_input + st.session_state.show_results = False + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + # Primero los radio buttons para tipo de texto + st.markdown("### Tipo de texto") + text_type = st.radio( + "", + options=list(TEXT_TYPES.keys()), + format_func=lambda x: TEXT_TYPES[x]['name'], + horizontal=True, + key="text_type_radio", + help="Selecciona el tipo de texto para ajustar los criterios de evaluación" + ) + + st.session_state.current_text_type = text_type + + # Luego mostrar los resultados + display_results( + metrics=st.session_state.current_metrics, + text_type=text_type + ) + + except Exception as e: + logger.error(f"Error en interfaz principal: {str(e)}") + st.error("Ocurrió un error al cargar la interfaz") + +###################################3333 + +''' +def display_results(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + # Gráfico radar en la columna derecha + with graph_col: + display_radar_chart(metrics_config, thresholds) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") +''' + +###################################### +###################################### +def display_results(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + # Gráfico radar en la columna derecha + with graph_col: + display_radar_chart(metrics_config, thresholds) + + recommendations = generate_recommendations( + metrics=metrics, + text_type=text_type, + lang_code=st.session_state.lang_code + ) + + # Separador visual + st.markdown("---") + + # Título para la sección de recomendaciones + st.subheader("Recomendaciones para mejorar tu escritura") + + # Mostrar las recomendaciones + display_recommendations(recommendations, get_translations(st.session_state.lang_code)) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") + + +###################################### +###################################### +def display_radar_chart(metrics_config, thresholds): + """ + Muestra el gráfico radar con los resultados. + """ + try: + # Preparar datos para el gráfico + categories = [m['label'] for m in metrics_config] + values_user = [m['value'] for m in metrics_config] + min_values = [m['thresholds']['min'] for m in metrics_config] + target_values = [m['thresholds']['target'] for m in metrics_config] + + # Crear y configurar gráfico + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111, projection='polar') + + # Configurar radar + angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] + angles += angles[:1] + values_user += values_user[:1] + min_values += min_values[:1] + target_values += target_values[:1] + + # Configurar ejes + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=10) + circle_ticks = np.arange(0, 1.1, 0.2) + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar áreas de umbrales + ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5) + ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5) + ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) + ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) + + # Dibujar valores del usuario + ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura') + ax.fill(angles, values_user, '#3498db', alpha=0.2) + + # Ajustar leyenda + ax.legend( + loc='upper right', + bbox_to_anchor=(1.3, 1.1), # Cambiado de (0.1, 0.1) a (1.3, 1.1) + fontsize=10, + frameon=True, + facecolor='white', + edgecolor='none', + shadow=True + ) + + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error mostrando gráfico radar: {str(e)}") + st.error("Error al mostrar el gráfico") + +##################################################### +def display_recommendations(recommendations, t): + """ + Muestra las recomendaciones con un diseño de tarjetas. + """ + # Definir colores para cada categoría + colors = { + 'vocabulary': '#2E86C1', # Azul + 'structure': '#28B463', # Verde + 'cohesion': '#F39C12', # Naranja + 'clarity': '#9B59B6', # Púrpura + 'priority': '#E74C3C' # Rojo para la categoría prioritaria + } + + # Iconos para cada categoría + icons = { + 'vocabulary': '📚', + 'structure': '🏗️', + 'cohesion': '🔄', + 'clarity': '💡', + 'priority': '⭐' + } + + # Obtener traducciones para cada dimensión + dimension_names = { + 'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"), + 'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"), + 'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"), + 'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"), + 'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad") + } + + # Título de la sección prioritaria + priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar') + st.markdown(f"### {icons['priority']} {priority_focus}") + + # Determinar área prioritaria (la que tiene menor puntuación) + priority_area = recommendations.get('priority', 'vocabulary') + priority_title = dimension_names.get(priority_area, "Área prioritaria") + + # Determinar el contenido para mostrar + if isinstance(recommendations[priority_area], dict) and 'title' in recommendations[priority_area]: + priority_title = recommendations[priority_area]['title'] + priority_content = recommendations[priority_area]['content'] + else: + priority_content = recommendations[priority_area] + + # Mostrar la recomendación prioritaria con un estilo destacado + with st.container(): + st.markdown( + f""" +
+

{priority_title}

+

{priority_content}

+
+ """, + unsafe_allow_html=True + ) + + # Crear dos columnas para las tarjetas de recomendaciones restantes + col1, col2 = st.columns(2) + + # Distribuir las recomendaciones en las columnas + categories = ['vocabulary', 'structure', 'cohesion', 'clarity'] + for i, category in enumerate(categories): + # Saltar si esta categoría ya es la prioritaria + if category == priority_area: + continue + + # Determinar título y contenido + if isinstance(recommendations[category], dict) and 'title' in recommendations[category]: + category_title = recommendations[category]['title'] + category_content = recommendations[category]['content'] + else: + category_title = dimension_names.get(category, category) + category_content = recommendations[category] + + # Alternar entre columnas + with col1 if i % 2 == 0 else col2: + # Crear tarjeta para cada recomendación + st.markdown( + f""" +
+

{icons[category]} {category_title}

+

{category_content}

+
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/modules/studentact/__pycache__/student_activities.cpython-311.pyc b/modules/studentact/__pycache__/student_activities.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e2b820fda86da0621440ebd0d0aabd60e9e259d Binary files /dev/null and b/modules/studentact/__pycache__/student_activities.cpython-311.pyc differ diff --git a/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc b/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b2ea707d57df5d3e7a4171dd1065ddf0c25bdd9 Binary files /dev/null and b/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc differ diff --git a/modules/studentact/claude_recommendations.py b/modules/studentact/claude_recommendations.py new file mode 100644 index 0000000000000000000000000000000000000000..af9b746c04ec9d462dab4415520cdbbdd37a522c --- /dev/null +++ b/modules/studentact/claude_recommendations.py @@ -0,0 +1,266 @@ +# modules/studentact/claude_recommendations.py +import os +import anthropic +import streamlit as st +import logging +import time +import json +from datetime import datetime, timezone + +# Local imports +from ..utils.widget_utils import generate_unique_key +from ..database.current_situation_mongo_db import store_current_situation_result + +logger = logging.getLogger(__name__) + +# Define text types +TEXT_TYPES = { + 'es': { + 'academic_article': 'artículo académico', + 'university_work': 'trabajo universitario', + 'general_communication': 'comunicación general' + }, + 'en': { + 'academic_article': 'academic article', + 'university_work': 'university work', + 'general_communication': 'general communication' + }, + 'fr': { + 'academic_article': 'article académique', + 'university_work': 'travail universitaire', + 'general_communication': 'communication générale' + } +} + +# Cache for recommendations to avoid redundant API calls +recommendation_cache = {} + +def get_recommendation_cache_key(text, metrics, text_type, lang_code): + """ + Generate a cache key for recommendations. + """ + # Create a simple hash based on text content and metrics + text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing + metrics_hash = hash(json.dumps(metrics, sort_keys=True)) + return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}" + +def format_metrics_for_claude(metrics, lang_code, text_type): + """ + Format metrics in a way that's readable for Claude + """ + formatted_metrics = {} + for key, value in metrics.items(): + if isinstance(value, (int, float)): + formatted_metrics[key] = round(value, 2) + else: + formatted_metrics[key] = value + + # Add context about what type of text this is + text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type) + formatted_metrics['text_type'] = text_type_label + + return formatted_metrics + +def generate_claude_recommendations(text, metrics, text_type, lang_code): + """ + Generate personalized recommendations using Claude API. + """ + try: + api_key = os.environ.get("ANTHROPIC_API_KEY") + if not api_key: + logger.error("Claude API key not found in environment variables") + return get_fallback_recommendations(lang_code) + + # Check cache first + cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code) + if cache_key in recommendation_cache: + logger.info("Using cached recommendations") + return recommendation_cache[cache_key] + + # Format metrics for Claude + formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type) + + # Determine language for prompt + if lang_code == 'es': + system_prompt = """Eres un asistente especializado en análisis de textos académicos y comunicación escrita. + Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas. + Usa un tono constructivo y específico. Sé claro y directo con tus sugerencias. + """ + user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}' + y proporciona recomendaciones personalizadas para mejorarlo. + + MÉTRICAS DE ANÁLISIS: + {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)} + + TEXTO A ANALIZAR: + {text[:2000]} # Limitamos el texto para evitar exceder tokens + + Proporciona tu análisis con el siguiente formato: + 1. Un resumen breve (2-3 frases) del análisis general + 2. 3-4 recomendaciones específicas y accionables (cada una de 1-2 frases) + 3. Un ejemplo concreto de mejora tomado del propio texto del usuario + 4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso) + + Tu respuesta debe ser concisa y no exceder los 300 palabras.""" + else: + # Default to English + system_prompt = """You are an assistant specialized in analyzing academic texts and written communication. + Your task is to analyze the user's text and provide personalized recommendations. + Use a constructive and specific tone. Be clear and direct with your suggestions. + """ + user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}' + and provide personalized recommendations to improve it. + + ANALYSIS METRICS: + {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)} + + TEXT TO ANALYZE: + {text[:2000]} # Limiting text to avoid exceeding tokens + + Provide your analysis with the following format: + 1. A brief summary (2-3 sentences) of the general analysis + 2. 3-4 specific and actionable recommendations (each 1-2 sentences) + 3. A concrete example of improvement taken from the user's own text + 4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis) + + Your response should be concise and not exceed 300 words.""" + + # Initialize Claude client + client = anthropic.Anthropic(api_key=api_key) + + # Call Claude API + start_time = time.time() + response = client.messages.create( + model="claude-3-5-sonnet-20241022", + max_tokens=1024, + temperature=0.7, + system=system_prompt, + messages=[ + {"role": "user", "content": user_prompt} + ] + ) + logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds") + + # Extract recommendations + recommendations = response.content[0].text + + # Cache the result + recommendation_cache[cache_key] = recommendations + + return recommendations + except Exception as e: + logger.error(f"Error generating recommendations with Claude: {str(e)}") + return get_fallback_recommendations(lang_code) + +def get_fallback_recommendations(lang_code): + """ + Return fallback recommendations if Claude API fails + """ + if lang_code == 'es': + return """ + **Análisis General** + Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión. + + **Recomendaciones**: + - Intenta variar tu vocabulario para evitar repeticiones innecesarias + - Considera revisar la longitud de tus oraciones para mantener un mejor ritmo + - Asegúrate de establecer conexiones claras entre las ideas principales + - Revisa la consistencia en el uso de tiempos verbales + + **Herramienta recomendada**: + Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones. + """ + else: + return """ + **General Analysis** + Your text presents an adequate basic structure, but there are areas that can be improved for better clarity and cohesion. + + **Recommendations**: + - Try to vary your vocabulary to avoid unnecessary repetition + - Consider reviewing the length of your sentences to maintain a better rhythm + - Make sure to establish clear connections between main ideas + - Check consistency in the use of verb tenses + + **Recommended tool**: + We suggest using Morphosyntactic Analysis to identify patterns in your sentence structure. + """ + + +####################################### + +def store_recommendations(username, text, metrics, text_type, recommendations): + """ + Store the recommendations in the database + """ + try: + # Importar la función de almacenamiento de recomendaciones + from ..database.claude_recommendations_mongo_db import store_claude_recommendation + + # Guardar usando la nueva función especializada + result = store_claude_recommendation( + username=username, + text=text, + metrics=metrics, + text_type=text_type, + recommendations=recommendations + ) + + logger.info(f"Recommendations stored successfully: {result}") + return result + except Exception as e: + logger.error(f"Error storing recommendations: {str(e)}") + return False + + +########################################## +########################################## +def display_personalized_recommendations(text, metrics, text_type, lang_code, t): + """ + Display personalized recommendations based on text analysis + """ + try: + # Generate recommendations + recommendations = generate_claude_recommendations(text, metrics, text_type, lang_code) + + # Format and display recommendations in a nice container + st.markdown("### 📝 " + t.get('recommendations_title', 'Personalized Recommendations')) + + with st.container(): + st.markdown(f""" +
+ {recommendations} +
+ """, unsafe_allow_html=True) + + # Add prompt to use assistant + st.info("💡 **" + t.get('assistant_prompt', 'For further improvement:') + "** " + + t.get('assistant_message', 'Open the virtual assistant (powered by Claude AI) in the upper left corner by clicking the arrow next to the logo.')) + + # Add save button + col1, col2, col3 = st.columns([1,1,1]) + with col2: + if st.button( + t.get('save_button', 'Save Analysis'), + key=generate_unique_key("claude_recommendations", "save"), + type="primary", + use_container_width=True + ): + if 'username' in st.session_state: + success = store_recommendations( + st.session_state.username, + text, + metrics, + text_type, + recommendations + ) + if success: + st.success(t.get('save_success', 'Analysis saved successfully')) + else: + st.error(t.get('save_error', 'Error saving analysis')) + else: + st.error(t.get('login_required', 'Please log in to save analysis')) + + except Exception as e: + logger.error(f"Error displaying recommendations: {str(e)}") + st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.')) \ No newline at end of file diff --git a/modules/studentact/current_situation_analysis-FAIL.py b/modules/studentact/current_situation_analysis-FAIL.py new file mode 100644 index 0000000000000000000000000000000000000000..873a8de350242c563ff7d0257be106e305927e4e --- /dev/null +++ b/modules/studentact/current_situation_analysis-FAIL.py @@ -0,0 +1,810 @@ +#v3/modules/studentact/current_situation_analysis.py + +import streamlit as st +import matplotlib.pyplot as plt +import networkx as nx +import seaborn as sns +from collections import Counter +from itertools import combinations +import numpy as np +import matplotlib.patches as patches +import logging + +# 2. Configuración básica del logging +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', + handlers=[ + logging.StreamHandler(), + logging.FileHandler('app.log') + ] +) + +# 3. Obtener el logger específico para este módulo +logger = logging.getLogger(__name__) + +######################################################################### + +def correlate_metrics(scores): + """ + Ajusta los scores para mantener correlaciones lógicas entre métricas. + + Args: + scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad + + Returns: + dict con scores ajustados + """ + try: + # 1. Correlación estructura-cohesión + # La cohesión no puede ser menor que estructura * 0.7 + min_cohesion = scores['structure']['normalized_score'] * 0.7 + if scores['cohesion']['normalized_score'] < min_cohesion: + scores['cohesion']['normalized_score'] = min_cohesion + + # 2. Correlación vocabulario-cohesión + # La cohesión léxica depende del vocabulario + vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 + scores['cohesion']['normalized_score'] = max( + scores['cohesion']['normalized_score'], + vocab_influence + ) + + # 3. Correlación cohesión-claridad + # La claridad no puede superar cohesión * 1.2 + max_clarity = scores['cohesion']['normalized_score'] * 1.2 + if scores['clarity']['normalized_score'] > max_clarity: + scores['clarity']['normalized_score'] = max_clarity + + # 4. Correlación estructura-claridad + # La claridad no puede superar estructura * 1.1 + struct_max_clarity = scores['structure']['normalized_score'] * 1.1 + scores['clarity']['normalized_score'] = min( + scores['clarity']['normalized_score'], + struct_max_clarity + ) + + # Normalizar todos los scores entre 0 y 1 + for metric in scores: + scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) + + return scores + + except Exception as e: + logger.error(f"Error en correlate_metrics: {str(e)}") + return scores + +########################################################################## + +def analyze_text_dimensions(doc): + """ + Analiza las dimensiones principales del texto manteniendo correlaciones lógicas. + """ + try: + # Obtener scores iniciales + vocab_score, vocab_details = analyze_vocabulary_diversity(doc) + struct_score = analyze_structure(doc) + cohesion_score = analyze_cohesion(doc) + clarity_score, clarity_details = analyze_clarity(doc) + + # Crear diccionario de scores inicial + scores = { + 'vocabulary': { + 'normalized_score': vocab_score, + 'details': vocab_details + }, + 'structure': { + 'normalized_score': struct_score, + 'details': None + }, + 'cohesion': { + 'normalized_score': cohesion_score, + 'details': None + }, + 'clarity': { + 'normalized_score': clarity_score, + 'details': clarity_details + } + } + + # Ajustar correlaciones entre métricas + adjusted_scores = correlate_metrics(scores) + + # Logging para diagnóstico + logger.info(f""" + Scores originales vs ajustados: + Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} + Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} + Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} + Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} + """) + + return adjusted_scores + + except Exception as e: + logger.error(f"Error en analyze_text_dimensions: {str(e)}") + return { + 'vocabulary': {'normalized_score': 0.0, 'details': {}}, + 'structure': {'normalized_score': 0.0, 'details': {}}, + 'cohesion': {'normalized_score': 0.0, 'details': {}}, + 'clarity': {'normalized_score': 0.0, 'details': {}} + } + + + +############################################################################################# + +def analyze_clarity(doc): + """ + Analiza la claridad del texto considerando múltiples factores. + """ + try: + sentences = list(doc.sents) + if not sentences: + return 0.0, {} + + # 1. Longitud de oraciones + sentence_lengths = [len(sent) for sent in sentences] + avg_length = sum(sentence_lengths) / len(sentences) + + # Normalizar usando los umbrales definidos para clarity + length_score = normalize_score( + value=avg_length, + metric_type='clarity', + optimal_length=20, # Una oración ideal tiene ~20 palabras + min_threshold=0.60, # Consistente con METRIC_THRESHOLDS + target_threshold=0.75 # Consistente con METRIC_THRESHOLDS + ) + + # 2. Análisis de conectores + connector_count = 0 + connector_weights = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: + connector_count += connector_weights[token.pos_] + + # Normalizar conectores por oración + connectors_per_sentence = connector_count / len(sentences) if sentences else 0 + connector_score = normalize_score( + value=connectors_per_sentence, + metric_type='clarity', + optimal_connections=1.5, # ~1.5 conectores por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 3. Complejidad estructural + clause_count = 0 + for sent in sentences: + verbs = [token for token in sent if token.pos_ == 'VERB'] + clause_count += len(verbs) + + complexity_raw = clause_count / len(sentences) if sentences else 0 + complexity_score = normalize_score( + value=complexity_raw, + metric_type='clarity', + optimal_depth=2.0, # ~2 cláusulas por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 4. Densidad léxica + content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) + total_words = len([token for token in doc if token.is_alpha]) + density = content_words / total_words if total_words > 0 else 0 + + density_score = normalize_score( + value=density, + metric_type='clarity', + optimal_connections=0.6, # 60% de palabras de contenido es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # Score final ponderado + weights = { + 'length': 0.3, + 'connectors': 0.3, + 'complexity': 0.2, + 'density': 0.2 + } + + clarity_score = ( + weights['length'] * length_score + + weights['connectors'] * connector_score + + weights['complexity'] * complexity_score + + weights['density'] * density_score + ) + + details = { + 'length_score': length_score, + 'connector_score': connector_score, + 'complexity_score': complexity_score, + 'density_score': density_score, + 'avg_sentence_length': avg_length, + 'connectors_per_sentence': connectors_per_sentence, + 'density': density + } + + # Agregar logging para diagnóstico + logger.info(f""" + Scores de Claridad: + - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) + - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración) + - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas) + - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) + - Score Final: {clarity_score:.2f} + """) + + return clarity_score, details + + except Exception as e: + logger.error(f"Error en analyze_clarity: {str(e)}") + return 0.0, {} + + +def analyze_vocabulary_diversity(doc): + """Análisis mejorado de la diversidad y calidad del vocabulario""" + try: + # 1. Análisis básico de diversidad + unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} + total_words = len([token for token in doc if token.is_alpha]) + basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 + + # 2. Análisis de registro + academic_words = 0 + narrative_words = 0 + technical_terms = 0 + + # Clasificar palabras por registro + for token in doc: + if token.is_alpha: + # Detectar términos académicos/técnicos + if token.pos_ in ['NOUN', 'VERB', 'ADJ']: + if any(parent.pos_ == 'NOUN' for parent in token.ancestors): + technical_terms += 1 + # Detectar palabras narrativas + if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: + narrative_words += 1 + + # 3. Análisis de complejidad sintáctica + avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) + + # 4. Calcular score ponderado + weights = { + 'diversity': 0.3, + 'technical': 0.3, + 'narrative': 0.2, + 'complexity': 0.2 + } + + scores = { + 'diversity': basic_diversity, + 'technical': technical_terms / total_words if total_words > 0 else 0, + 'narrative': narrative_words / total_words if total_words > 0 else 0, + 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras + } + + # Score final ponderado + final_score = sum(weights[key] * scores[key] for key in weights) + + # Información adicional para diagnóstico + details = { + 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', + 'scores': scores + } + + return final_score, details + + except Exception as e: + logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") + return 0.0, {} + +def analyze_cohesion(doc): + """Analiza la cohesión textual""" + try: + sentences = list(doc.sents) + if len(sentences) < 2: + logger.warning("Texto demasiado corto para análisis de cohesión") + return 0.0 + + # 1. Análisis de conexiones léxicas + lexical_connections = 0 + total_possible_connections = 0 + + for i in range(len(sentences)-1): + # Obtener lemmas significativos (no stopwords) + sent1_words = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_words = {token.lemma_ for token in sentences[i+1] + if token.is_alpha and not token.is_stop} + + if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos + intersection = len(sent1_words.intersection(sent2_words)) + total_possible = min(len(sent1_words), len(sent2_words)) + + if total_possible > 0: + lexical_score = intersection / total_possible + lexical_connections += lexical_score + total_possible_connections += 1 + + # 2. Análisis de conectores + connector_count = 0 + connector_types = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if (token.pos_ in connector_types and + token.dep_ in ['cc', 'mark', 'advmod'] and + not token.is_stop): + connector_count += connector_types[token.pos_] + + # 3. Cálculo de scores normalizados + if total_possible_connections > 0: + lexical_cohesion = lexical_connections / total_possible_connections + else: + lexical_cohesion = 0 + + if len(sentences) > 1: + connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) + else: + connector_cohesion = 0 + + # 4. Score final ponderado + weights = { + 'lexical': 0.7, + 'connectors': 0.3 + } + + cohesion_score = ( + weights['lexical'] * lexical_cohesion + + weights['connectors'] * connector_cohesion + ) + + # 5. Logging para diagnóstico + logger.info(f""" + Análisis de Cohesión: + - Conexiones léxicas encontradas: {lexical_connections} + - Conexiones posibles: {total_possible_connections} + - Lexical cohesion score: {lexical_cohesion} + - Conectores encontrados: {connector_count} + - Connector cohesion score: {connector_cohesion} + - Score final: {cohesion_score} + """) + + return cohesion_score + + except Exception as e: + logger.error(f"Error en analyze_cohesion: {str(e)}") + return 0.0 + +def analyze_structure(doc): + try: + if len(doc) == 0: + return 0.0 + + structure_scores = [] + for token in doc: + if token.dep_ == 'ROOT': + result = get_dependency_depths(token) + structure_scores.append(result['final_score']) + + if not structure_scores: + return 0.0 + + return min(1.0, sum(structure_scores) / len(structure_scores)) + + except Exception as e: + logger.error(f"Error en analyze_structure: {str(e)}") + return 0.0 + +# Funciones auxiliares de análisis + +def get_dependency_depths(token, depth=0, analyzed_tokens=None): + """ + Analiza la profundidad y calidad de las relaciones de dependencia. + + Args: + token: Token a analizar + depth: Profundidad actual en el árbol + analyzed_tokens: Set para evitar ciclos en el análisis + + Returns: + dict: Información detallada sobre las dependencias + - depths: Lista de profundidades + - relations: Diccionario con tipos de relaciones encontradas + - complexity_score: Puntuación de complejidad + """ + if analyzed_tokens is None: + analyzed_tokens = set() + + # Evitar ciclos + if token.i in analyzed_tokens: + return { + 'depths': [], + 'relations': {}, + 'complexity_score': 0 + } + + analyzed_tokens.add(token.i) + + # Pesos para diferentes tipos de dependencias + dependency_weights = { + # Dependencias principales + 'nsubj': 1.2, # Sujeto nominal + 'obj': 1.1, # Objeto directo + 'iobj': 1.1, # Objeto indirecto + 'ROOT': 1.3, # Raíz + + # Modificadores + 'amod': 0.8, # Modificador adjetival + 'advmod': 0.8, # Modificador adverbial + 'nmod': 0.9, # Modificador nominal + + # Estructuras complejas + 'csubj': 1.4, # Cláusula como sujeto + 'ccomp': 1.3, # Complemento clausal + 'xcomp': 1.2, # Complemento clausal abierto + 'advcl': 1.2, # Cláusula adverbial + + # Coordinación y subordinación + 'conj': 1.1, # Conjunción + 'cc': 0.7, # Coordinación + 'mark': 0.8, # Marcador + + # Otros + 'det': 0.5, # Determinante + 'case': 0.5, # Caso + 'punct': 0.1 # Puntuación + } + + # Inicializar resultados + current_result = { + 'depths': [depth], + 'relations': {token.dep_: 1}, + 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) + } + + # Analizar hijos recursivamente + for child in token.children: + child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) + + # Combinar profundidades + current_result['depths'].extend(child_result['depths']) + + # Combinar relaciones + for rel, count in child_result['relations'].items(): + current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count + + # Acumular score de complejidad + current_result['complexity_score'] += child_result['complexity_score'] + + # Calcular métricas adicionales + current_result['max_depth'] = max(current_result['depths']) + current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) + current_result['relation_diversity'] = len(current_result['relations']) + + # Calcular score ponderado por tipo de estructura + structure_bonus = 0 + + # Bonus por estructuras complejas + if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: + structure_bonus += 0.3 + + # Bonus por coordinación balanceada + if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: + structure_bonus += 0.2 + + # Bonus por modificación rica + if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: + structure_bonus += 0.2 + + current_result['final_score'] = ( + current_result['complexity_score'] * (1 + structure_bonus) + ) + + return current_result + +def normalize_score(value, metric_type, + min_threshold=0.0, target_threshold=1.0, + range_factor=2.0, optimal_length=None, + optimal_connections=None, optimal_depth=None): + """ + Normaliza un valor considerando umbrales específicos por tipo de métrica. + + Args: + value: Valor a normalizar + metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity') + min_threshold: Valor mínimo aceptable + target_threshold: Valor objetivo + range_factor: Factor para ajustar el rango + optimal_length: Longitud óptima (opcional) + optimal_connections: Número óptimo de conexiones (opcional) + optimal_depth: Profundidad óptima de estructura (opcional) + + Returns: + float: Valor normalizado entre 0 y 1 + """ + try: + # Definir umbrales por tipo de métrica + METRIC_THRESHOLDS = { + 'vocabulary': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.5 + }, + 'structure': { + 'min': 0.65, + 'target': 0.80, + 'range_factor': 1.8 + }, + 'cohesion': { + 'min': 0.55, + 'target': 0.70, + 'range_factor': 1.6 + }, + 'clarity': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.7 + } + } + + # Validar valores negativos o cero + if value < 0: + logger.warning(f"Valor negativo recibido: {value}") + return 0.0 + + # Manejar caso donde el valor es cero + if value == 0: + logger.warning("Valor cero recibido") + return 0.0 + + # Obtener umbrales específicos para el tipo de métrica + thresholds = METRIC_THRESHOLDS.get(metric_type, { + 'min': min_threshold, + 'target': target_threshold, + 'range_factor': range_factor + }) + + # Identificar el valor de referencia a usar + if optimal_depth is not None: + reference = optimal_depth + elif optimal_connections is not None: + reference = optimal_connections + elif optimal_length is not None: + reference = optimal_length + else: + reference = thresholds['target'] + + # Validar valor de referencia + if reference <= 0: + logger.warning(f"Valor de referencia inválido: {reference}") + return 0.0 + + # Calcular score basado en umbrales + if value < thresholds['min']: + # Valor por debajo del mínimo + score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo + elif value < thresholds['target']: + # Valor entre mínimo y objetivo + range_size = thresholds['target'] - thresholds['min'] + progress = (value - thresholds['min']) / range_size + score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0 + else: + # Valor alcanza o supera el objetivo + score = 1.0 + + # Penalizar valores muy por encima del objetivo + if value > (thresholds['target'] * thresholds['range_factor']): + excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) + score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos + + # Asegurar que el resultado esté entre 0 y 1 + return max(0.0, min(1.0, score)) + + except Exception as e: + logger.error(f"Error en normalize_score: {str(e)}") + return 0.0 + + +# Funciones de generación de gráficos +def generate_sentence_graphs(doc): + """Genera visualizaciones de estructura de oraciones""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def generate_word_connections(doc): + """Genera red de conexiones de palabras""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def generate_connection_paths(doc): + """Genera patrones de conexión""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def create_vocabulary_network(doc): + """ + Genera el grafo de red de vocabulario. + """ + G = nx.Graph() + + # Crear nodos para palabras significativas + words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] + word_freq = Counter(words) + + # Añadir nodos con tamaño basado en frecuencia + for word, freq in word_freq.items(): + G.add_node(word, size=freq) + + # Crear conexiones basadas en co-ocurrencia + window_size = 5 + for i in range(len(words) - window_size): + window = words[i:i+window_size] + for w1, w2 in combinations(set(window), 2): + if G.has_edge(w1, w2): + G[w1][w2]['weight'] += 1 + else: + G.add_edge(w1, w2, weight=1) + + # Crear visualización + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + + # Dibujar nodos + nx.draw_networkx_nodes(G, pos, + node_size=[G.nodes[node]['size']*100 for node in G.nodes], + node_color='lightblue', + alpha=0.7) + + # Dibujar conexiones + nx.draw_networkx_edges(G, pos, + width=[G[u][v]['weight']*0.5 for u,v in G.edges], + alpha=0.5) + + # Añadir etiquetas + nx.draw_networkx_labels(G, pos) + + plt.title("Red de Vocabulario") + plt.axis('off') + return fig + +def create_syntax_complexity_graph(doc): + """ + Genera el diagrama de arco de complejidad sintáctica. + Muestra la estructura de dependencias con colores basados en la complejidad. + """ + try: + # Preparar datos para la visualización + sentences = list(doc.sents) + if not sentences: + return None + + # Crear figura para el gráfico + fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) + + # Colores para diferentes niveles de profundidad + depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) + + y_offset = 0 + max_x = 0 + + for sent in sentences: + words = [token.text for token in sent] + x_positions = range(len(words)) + max_x = max(max_x, len(words)) + + # Dibujar palabras + plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) + plt.scatter(x_positions, [y_offset] * len(words), alpha=0) + + # Añadir texto + for i, word in enumerate(words): + plt.annotate(word, (i, y_offset), xytext=(0, -10), + textcoords='offset points', ha='center') + + # Dibujar arcos de dependencia + for token in sent: + if token.dep_ != "ROOT": + # Calcular profundidad de dependencia + depth = 0 + current = token + while current.head != current: + depth += 1 + current = current.head + + # Determinar posiciones para el arco + start = token.i - sent[0].i + end = token.head.i - sent[0].i + + # Altura del arco basada en la distancia entre palabras + height = 0.5 * abs(end - start) + + # Color basado en la profundidad + color = depth_colors[min(depth, len(depth_colors)-1)] + + # Crear arco + arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), + width=abs(end - start), + height=height, + angle=0, + theta1=0, + theta2=180, + color=color, + alpha=0.6) + ax.add_patch(arc) + + y_offset -= 2 + + # Configurar el gráfico + plt.xlim(-1, max_x) + plt.ylim(y_offset - 1, 1) + plt.axis('off') + plt.title("Complejidad Sintáctica") + + return fig + + except Exception as e: + logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") + return None + + +def create_cohesion_heatmap(doc): + """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones.""" + try: + sentences = list(doc.sents) + n_sentences = len(sentences) + + if n_sentences < 2: + return None + + similarity_matrix = np.zeros((n_sentences, n_sentences)) + + for i in range(n_sentences): + for j in range(n_sentences): + sent1_lemmas = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_lemmas = {token.lemma_ for token in sentences[j] + if token.is_alpha and not token.is_stop} + + if sent1_lemmas and sent2_lemmas: + intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí + union = len(sent1_lemmas | sent2_lemmas) # Y aquí + similarity_matrix[i, j] = intersection / union if union > 0 else 0 + + # Crear visualización + fig, ax = plt.subplots(figsize=(10, 8)) + + sns.heatmap(similarity_matrix, + cmap='YlOrRd', + square=True, + xticklabels=False, + yticklabels=False, + cbar_kws={'label': 'Cohesión'}, + ax=ax) + + plt.title("Mapa de Cohesión Textual") + plt.xlabel("Oraciones") + plt.ylabel("Oraciones") + + plt.tight_layout() + return fig + + except Exception as e: + logger.error(f"Error en create_cohesion_heatmap: {str(e)}") + return None diff --git a/modules/studentact/current_situation_analysis.py b/modules/studentact/current_situation_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..f78d7fab461401deb64733638f81fc39c83975e2 --- /dev/null +++ b/modules/studentact/current_situation_analysis.py @@ -0,0 +1,1008 @@ +#v3/modules/studentact/current_situation_analysis.py + +import streamlit as st +import matplotlib.pyplot as plt +import networkx as nx +import seaborn as sns +from collections import Counter +from itertools import combinations +import numpy as np +import matplotlib.patches as patches +import logging + +from translations.recommendations import RECOMMENDATIONS + +# 2. Configuración básica del logging +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', + handlers=[ + logging.StreamHandler(), + logging.FileHandler('app.log') + ] +) + +# 3. Obtener el logger específico para este módulo +logger = logging.getLogger(__name__) + +######################################################################### + +def correlate_metrics(scores): + """ + Ajusta los scores para mantener correlaciones lógicas entre métricas. + + Args: + scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad + + Returns: + dict con scores ajustados + """ + try: + # 1. Correlación estructura-cohesión + # La cohesión no puede ser menor que estructura * 0.7 + min_cohesion = scores['structure']['normalized_score'] * 0.7 + if scores['cohesion']['normalized_score'] < min_cohesion: + scores['cohesion']['normalized_score'] = min_cohesion + + # 2. Correlación vocabulario-cohesión + # La cohesión léxica depende del vocabulario + vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 + scores['cohesion']['normalized_score'] = max( + scores['cohesion']['normalized_score'], + vocab_influence + ) + + # 3. Correlación cohesión-claridad + # La claridad no puede superar cohesión * 1.2 + max_clarity = scores['cohesion']['normalized_score'] * 1.2 + if scores['clarity']['normalized_score'] > max_clarity: + scores['clarity']['normalized_score'] = max_clarity + + # 4. Correlación estructura-claridad + # La claridad no puede superar estructura * 1.1 + struct_max_clarity = scores['structure']['normalized_score'] * 1.1 + scores['clarity']['normalized_score'] = min( + scores['clarity']['normalized_score'], + struct_max_clarity + ) + + # Normalizar todos los scores entre 0 y 1 + for metric in scores: + scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) + + return scores + + except Exception as e: + logger.error(f"Error en correlate_metrics: {str(e)}") + return scores + +########################################################################## + +def analyze_text_dimensions(doc): + """ + Analiza las dimensiones principales del texto manteniendo correlaciones lógicas. + """ + try: + # Obtener scores iniciales + vocab_score, vocab_details = analyze_vocabulary_diversity(doc) + struct_score = analyze_structure(doc) + cohesion_score = analyze_cohesion(doc) + clarity_score, clarity_details = analyze_clarity(doc) + + # Crear diccionario de scores inicial + scores = { + 'vocabulary': { + 'normalized_score': vocab_score, + 'details': vocab_details + }, + 'structure': { + 'normalized_score': struct_score, + 'details': None + }, + 'cohesion': { + 'normalized_score': cohesion_score, + 'details': None + }, + 'clarity': { + 'normalized_score': clarity_score, + 'details': clarity_details + } + } + + # Ajustar correlaciones entre métricas + adjusted_scores = correlate_metrics(scores) + + # Logging para diagnóstico + logger.info(f""" + Scores originales vs ajustados: + Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} + Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} + Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} + Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} + """) + + return adjusted_scores + + except Exception as e: + logger.error(f"Error en analyze_text_dimensions: {str(e)}") + return { + 'vocabulary': {'normalized_score': 0.0, 'details': {}}, + 'structure': {'normalized_score': 0.0, 'details': {}}, + 'cohesion': {'normalized_score': 0.0, 'details': {}}, + 'clarity': {'normalized_score': 0.0, 'details': {}} + } + + + +############################################################################################# + +def analyze_clarity(doc): + """ + Analiza la claridad del texto considerando múltiples factores. + """ + try: + sentences = list(doc.sents) + if not sentences: + return 0.0, {} + + # 1. Longitud de oraciones + sentence_lengths = [len(sent) for sent in sentences] + avg_length = sum(sentence_lengths) / len(sentences) + + # Normalizar usando los umbrales definidos para clarity + length_score = normalize_score( + value=avg_length, + metric_type='clarity', + optimal_length=20, # Una oración ideal tiene ~20 palabras + min_threshold=0.60, # Consistente con METRIC_THRESHOLDS + target_threshold=0.75 # Consistente con METRIC_THRESHOLDS + ) + + # 2. Análisis de conectores + connector_count = 0 + connector_weights = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: + connector_count += connector_weights[token.pos_] + + # Normalizar conectores por oración + connectors_per_sentence = connector_count / len(sentences) if sentences else 0 + connector_score = normalize_score( + value=connectors_per_sentence, + metric_type='clarity', + optimal_connections=1.5, # ~1.5 conectores por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 3. Complejidad estructural + clause_count = 0 + for sent in sentences: + verbs = [token for token in sent if token.pos_ == 'VERB'] + clause_count += len(verbs) + + complexity_raw = clause_count / len(sentences) if sentences else 0 + complexity_score = normalize_score( + value=complexity_raw, + metric_type='clarity', + optimal_depth=2.0, # ~2 cláusulas por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 4. Densidad léxica + content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) + total_words = len([token for token in doc if token.is_alpha]) + density = content_words / total_words if total_words > 0 else 0 + + density_score = normalize_score( + value=density, + metric_type='clarity', + optimal_connections=0.6, # 60% de palabras de contenido es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # Score final ponderado + weights = { + 'length': 0.3, + 'connectors': 0.3, + 'complexity': 0.2, + 'density': 0.2 + } + + clarity_score = ( + weights['length'] * length_score + + weights['connectors'] * connector_score + + weights['complexity'] * complexity_score + + weights['density'] * density_score + ) + + details = { + 'length_score': length_score, + 'connector_score': connector_score, + 'complexity_score': complexity_score, + 'density_score': density_score, + 'avg_sentence_length': avg_length, + 'connectors_per_sentence': connectors_per_sentence, + 'density': density + } + + # Agregar logging para diagnóstico + logger.info(f""" + Scores de Claridad: + - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) + - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración) + - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas) + - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) + - Score Final: {clarity_score:.2f} + """) + + return clarity_score, details + + except Exception as e: + logger.error(f"Error en analyze_clarity: {str(e)}") + return 0.0, {} + +######################################################################### +def analyze_vocabulary_diversity(doc): + """Análisis mejorado de la diversidad y calidad del vocabulario""" + try: + # 1. Análisis básico de diversidad + unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} + total_words = len([token for token in doc if token.is_alpha]) + basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 + + # 2. Análisis de registro + academic_words = 0 + narrative_words = 0 + technical_terms = 0 + + # Clasificar palabras por registro + for token in doc: + if token.is_alpha: + # Detectar términos académicos/técnicos + if token.pos_ in ['NOUN', 'VERB', 'ADJ']: + if any(parent.pos_ == 'NOUN' for parent in token.ancestors): + technical_terms += 1 + # Detectar palabras narrativas + if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: + narrative_words += 1 + + # 3. Análisis de complejidad sintáctica + avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) + + # 4. Calcular score ponderado + weights = { + 'diversity': 0.3, + 'technical': 0.3, + 'narrative': 0.2, + 'complexity': 0.2 + } + + scores = { + 'diversity': basic_diversity, + 'technical': technical_terms / total_words if total_words > 0 else 0, + 'narrative': narrative_words / total_words if total_words > 0 else 0, + 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras + } + + # Score final ponderado + final_score = sum(weights[key] * scores[key] for key in weights) + + # Información adicional para diagnóstico + details = { + 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', + 'scores': scores + } + + return final_score, details + + except Exception as e: + logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") + return 0.0, {} + +######################################################################### +def analyze_cohesion(doc): + """Analiza la cohesión textual""" + try: + sentences = list(doc.sents) + if len(sentences) < 2: + logger.warning("Texto demasiado corto para análisis de cohesión") + return 0.0 + + # 1. Análisis de conexiones léxicas + lexical_connections = 0 + total_possible_connections = 0 + + for i in range(len(sentences)-1): + # Obtener lemmas significativos (no stopwords) + sent1_words = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_words = {token.lemma_ for token in sentences[i+1] + if token.is_alpha and not token.is_stop} + + if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos + intersection = len(sent1_words.intersection(sent2_words)) + total_possible = min(len(sent1_words), len(sent2_words)) + + if total_possible > 0: + lexical_score = intersection / total_possible + lexical_connections += lexical_score + total_possible_connections += 1 + + # 2. Análisis de conectores + connector_count = 0 + connector_types = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if (token.pos_ in connector_types and + token.dep_ in ['cc', 'mark', 'advmod'] and + not token.is_stop): + connector_count += connector_types[token.pos_] + + # 3. Cálculo de scores normalizados + if total_possible_connections > 0: + lexical_cohesion = lexical_connections / total_possible_connections + else: + lexical_cohesion = 0 + + if len(sentences) > 1: + connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) + else: + connector_cohesion = 0 + + # 4. Score final ponderado + weights = { + 'lexical': 0.7, + 'connectors': 0.3 + } + + cohesion_score = ( + weights['lexical'] * lexical_cohesion + + weights['connectors'] * connector_cohesion + ) + + # 5. Logging para diagnóstico + logger.info(f""" + Análisis de Cohesión: + - Conexiones léxicas encontradas: {lexical_connections} + - Conexiones posibles: {total_possible_connections} + - Lexical cohesion score: {lexical_cohesion} + - Conectores encontrados: {connector_count} + - Connector cohesion score: {connector_cohesion} + - Score final: {cohesion_score} + """) + + return cohesion_score + + except Exception as e: + logger.error(f"Error en analyze_cohesion: {str(e)}") + return 0.0 + +######################################################################### +def analyze_structure(doc): + try: + if len(doc) == 0: + return 0.0 + + structure_scores = [] + for token in doc: + if token.dep_ == 'ROOT': + result = get_dependency_depths(token) + structure_scores.append(result['final_score']) + + if not structure_scores: + return 0.0 + + return min(1.0, sum(structure_scores) / len(structure_scores)) + + except Exception as e: + logger.error(f"Error en analyze_structure: {str(e)}") + return 0.0 + +######################################################################### +# Funciones auxiliares de análisis +def get_dependency_depths(token, depth=0, analyzed_tokens=None): + """ + Analiza la profundidad y calidad de las relaciones de dependencia. + + Args: + token: Token a analizar + depth: Profundidad actual en el árbol + analyzed_tokens: Set para evitar ciclos en el análisis + + Returns: + dict: Información detallada sobre las dependencias + - depths: Lista de profundidades + - relations: Diccionario con tipos de relaciones encontradas + - complexity_score: Puntuación de complejidad + """ + if analyzed_tokens is None: + analyzed_tokens = set() + + # Evitar ciclos + if token.i in analyzed_tokens: + return { + 'depths': [], + 'relations': {}, + 'complexity_score': 0 + } + + analyzed_tokens.add(token.i) + + # Pesos para diferentes tipos de dependencias + dependency_weights = { + # Dependencias principales + 'nsubj': 1.2, # Sujeto nominal + 'obj': 1.1, # Objeto directo + 'iobj': 1.1, # Objeto indirecto + 'ROOT': 1.3, # Raíz + + # Modificadores + 'amod': 0.8, # Modificador adjetival + 'advmod': 0.8, # Modificador adverbial + 'nmod': 0.9, # Modificador nominal + + # Estructuras complejas + 'csubj': 1.4, # Cláusula como sujeto + 'ccomp': 1.3, # Complemento clausal + 'xcomp': 1.2, # Complemento clausal abierto + 'advcl': 1.2, # Cláusula adverbial + + # Coordinación y subordinación + 'conj': 1.1, # Conjunción + 'cc': 0.7, # Coordinación + 'mark': 0.8, # Marcador + + # Otros + 'det': 0.5, # Determinante + 'case': 0.5, # Caso + 'punct': 0.1 # Puntuación + } + + # Inicializar resultados + current_result = { + 'depths': [depth], + 'relations': {token.dep_: 1}, + 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) + } + + # Analizar hijos recursivamente + for child in token.children: + child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) + + # Combinar profundidades + current_result['depths'].extend(child_result['depths']) + + # Combinar relaciones + for rel, count in child_result['relations'].items(): + current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count + + # Acumular score de complejidad + current_result['complexity_score'] += child_result['complexity_score'] + + # Calcular métricas adicionales + current_result['max_depth'] = max(current_result['depths']) + current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) + current_result['relation_diversity'] = len(current_result['relations']) + + # Calcular score ponderado por tipo de estructura + structure_bonus = 0 + + # Bonus por estructuras complejas + if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: + structure_bonus += 0.3 + + # Bonus por coordinación balanceada + if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: + structure_bonus += 0.2 + + # Bonus por modificación rica + if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: + structure_bonus += 0.2 + + current_result['final_score'] = ( + current_result['complexity_score'] * (1 + structure_bonus) + ) + + return current_result + +######################################################################### +def normalize_score(value, metric_type, + min_threshold=0.0, target_threshold=1.0, + range_factor=2.0, optimal_length=None, + optimal_connections=None, optimal_depth=None): + """ + Normaliza un valor considerando umbrales específicos por tipo de métrica. + + Args: + value: Valor a normalizar + metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity') + min_threshold: Valor mínimo aceptable + target_threshold: Valor objetivo + range_factor: Factor para ajustar el rango + optimal_length: Longitud óptima (opcional) + optimal_connections: Número óptimo de conexiones (opcional) + optimal_depth: Profundidad óptima de estructura (opcional) + + Returns: + float: Valor normalizado entre 0 y 1 + """ + try: + # Definir umbrales por tipo de métrica + METRIC_THRESHOLDS = { + 'vocabulary': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.5 + }, + 'structure': { + 'min': 0.65, + 'target': 0.80, + 'range_factor': 1.8 + }, + 'cohesion': { + 'min': 0.55, + 'target': 0.70, + 'range_factor': 1.6 + }, + 'clarity': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.7 + } + } + + # Validar valores negativos o cero + if value < 0: + logger.warning(f"Valor negativo recibido: {value}") + return 0.0 + + # Manejar caso donde el valor es cero + if value == 0: + logger.warning("Valor cero recibido") + return 0.0 + + # Obtener umbrales específicos para el tipo de métrica + thresholds = METRIC_THRESHOLDS.get(metric_type, { + 'min': min_threshold, + 'target': target_threshold, + 'range_factor': range_factor + }) + + # Identificar el valor de referencia a usar + if optimal_depth is not None: + reference = optimal_depth + elif optimal_connections is not None: + reference = optimal_connections + elif optimal_length is not None: + reference = optimal_length + else: + reference = thresholds['target'] + + # Validar valor de referencia + if reference <= 0: + logger.warning(f"Valor de referencia inválido: {reference}") + return 0.0 + + # Calcular score basado en umbrales + if value < thresholds['min']: + # Valor por debajo del mínimo + score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo + elif value < thresholds['target']: + # Valor entre mínimo y objetivo + range_size = thresholds['target'] - thresholds['min'] + progress = (value - thresholds['min']) / range_size + score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0 + else: + # Valor alcanza o supera el objetivo + score = 1.0 + + # Penalizar valores muy por encima del objetivo + if value > (thresholds['target'] * thresholds['range_factor']): + excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) + score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos + + # Asegurar que el resultado esté entre 0 y 1 + return max(0.0, min(1.0, score)) + + except Exception as e: + logger.error(f"Error en normalize_score: {str(e)}") + return 0.0 + +######################################################################### +######################################################################### +def generate_recommendations(metrics, text_type, lang_code='es'): + """ + Genera recomendaciones personalizadas basadas en las métricas del texto y el tipo de texto. + + Args: + metrics: Diccionario con las métricas analizadas + text_type: Tipo de texto ('academic_article', 'student_essay', 'general_communication') + lang_code: Código del idioma para las recomendaciones (es, en, fr, pt) + + Returns: + dict: Recomendaciones organizadas por categoría en el idioma correspondiente + """ + try: + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Verificar que el idioma esté soportado, usar español como respaldo + if lang_code not in RECOMMENDATIONS: + logger.warning(f"Idioma {lang_code} no soportado para recomendaciones, usando español") + lang_code = 'es' + + # Obtener traducciones para el idioma seleccionado + translations = RECOMMENDATIONS[lang_code] + + # Inicializar diccionario de recomendaciones + recommendations = { + 'vocabulary': [], + 'structure': [], + 'cohesion': [], + 'clarity': [], + 'specific': [], + 'priority': { + 'area': 'general', + 'tips': [] + }, + 'text_type_name': translations['text_types'][text_type], + 'dimension_names': translations['dimension_names'], + 'ui_text': { + 'priority_intro': translations['priority_intro'], + 'detailed_recommendations': translations['detailed_recommendations'], + 'save_button': translations['save_button'], + 'save_success': translations['save_success'], + 'save_error': translations['save_error'], + 'area_priority': translations['area_priority'] + } + } + + # Determinar nivel para cada dimensión y asignar recomendaciones + dimensions = ['vocabulary', 'structure', 'cohesion', 'clarity'] + scores = {} + + for dim in dimensions: + score = metrics[dim]['normalized_score'] + scores[dim] = score + + # Determinar nivel (bajo, medio, alto) + if score < thresholds[dim]['min']: + level = 'low' + elif score < thresholds[dim]['target']: + level = 'medium' + else: + level = 'high' + + # Asignar recomendaciones para ese nivel + recommendations[dim] = translations[dim][level] + + # Asignar recomendaciones específicas por tipo de texto + recommendations['specific'] = translations[text_type] + + # Determinar área prioritaria (la que tiene menor puntuación) + priority_dimension = min(scores, key=scores.get) + recommendations['priority']['area'] = priority_dimension + recommendations['priority']['tips'] = recommendations[priority_dimension] + + logger.info(f"Generadas recomendaciones en {lang_code} para texto tipo {text_type}") + return recommendations + + except Exception as e: + logger.error(f"Error en generate_recommendations: {str(e)}") + # Retornar mensajes genéricos en caso de error + if lang_code == 'en': + return { + 'vocabulary': ["Try enriching your vocabulary"], + 'structure': ["Work on the structure of your sentences"], + 'cohesion': ["Improve the connection between your ideas"], + 'clarity': ["Try to express your ideas more clearly"], + 'specific': ["Adapt your text according to its purpose"], + 'priority': { + 'area': 'general', + 'tips': ["Seek specific feedback from a tutor or teacher"] + }, + 'dimension_names': { + 'vocabulary': 'Vocabulary', + 'structure': 'Structure', + 'cohesion': 'Cohesion', + 'clarity': 'Clarity', + 'general': 'General' + }, + 'ui_text': { + 'priority_intro': "This is where you should focus your efforts.", + 'detailed_recommendations': "Detailed recommendations", + 'save_button': "Save analysis", + 'save_success': "Analysis saved successfully", + 'save_error': "Error saving analysis", + 'area_priority': "Priority area" + } + } + elif lang_code == 'fr': + return { + 'vocabulary': ["Essayez d'enrichir votre vocabulaire"], + 'structure': ["Travaillez sur la structure de vos phrases"], + 'cohesion': ["Améliorez la connexion entre vos idées"], + 'clarity': ["Essayez d'exprimer vos idées plus clairement"], + 'specific': ["Adaptez votre texte en fonction de son objectif"], + 'priority': { + 'area': 'general', + 'tips': ["Demandez des commentaires spécifiques à un tuteur ou un professeur"] + }, + 'dimension_names': { + 'vocabulary': 'Vocabulaire', + 'structure': 'Structure', + 'cohesion': 'Cohésion', + 'clarity': 'Clarté', + 'general': 'Général' + }, + 'ui_text': { + 'priority_intro': "C'est là que vous devriez concentrer vos efforts.", + 'detailed_recommendations': "Recommandations détaillées", + 'save_button': "Enregistrer l'analyse", + 'save_success': "Analyse enregistrée avec succès", + 'save_error': "Erreur lors de l'enregistrement de l'analyse", + 'area_priority': "Domaine prioritaire" + } + } + elif lang_code == 'pt': + return { + 'vocabulary': ["Tente enriquecer seu vocabulário"], + 'structure': ["Trabalhe na estrutura de suas frases"], + 'cohesion': ["Melhore a conexão entre suas ideias"], + 'clarity': ["Tente expressar suas ideias com mais clareza"], + 'specific': ["Adapte seu texto de acordo com seu propósito"], + 'priority': { + 'area': 'general', + 'tips': ["Busque feedback específico de um tutor ou professor"] + }, + 'dimension_names': { + 'vocabulary': 'Vocabulário', + 'structure': 'Estrutura', + 'cohesion': 'Coesão', + 'clarity': 'Clareza', + 'general': 'Geral' + }, + 'ui_text': { + 'priority_intro': "É aqui que você deve concentrar seus esforços.", + 'detailed_recommendations': "Recomendações detalhadas", + 'save_button': "Salvar análise", + 'save_success': "Análise salva com sucesso", + 'save_error': "Erro ao salvar análise", + 'area_priority': "Área prioritária" + } + } + else: # Español por defecto + return { + 'vocabulary': ["Intenta enriquecer tu vocabulario"], + 'structure': ["Trabaja en la estructura de tus oraciones"], + 'cohesion': ["Mejora la conexión entre tus ideas"], + 'clarity': ["Busca expresar tus ideas con mayor claridad"], + 'specific': ["Adapta tu texto según su propósito"], + 'priority': { + 'area': 'general', + 'tips': ["Busca retroalimentación específica de un tutor o profesor"] + }, + 'dimension_names': { + 'vocabulary': 'Vocabulario', + 'structure': 'Estructura', + 'cohesion': 'Cohesión', + 'clarity': 'Claridad', + 'general': 'General' + }, + 'ui_text': { + 'priority_intro': "Esta es el área donde debes concentrar tus esfuerzos.", + 'detailed_recommendations': "Recomendaciones detalladas", + 'save_button': "Guardar análisis", + 'save_success': "Análisis guardado con éxito", + 'save_error': "Error al guardar el análisis", + 'area_priority': "Área prioritaria" + } + } + + +######################################################################### +######################################################################### +# Funciones de generación de gráficos +def generate_sentence_graphs(doc): + """Genera visualizaciones de estructura de oraciones""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def generate_word_connections(doc): + """Genera red de conexiones de palabras""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def generate_connection_paths(doc): + """Genera patrones de conexión""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def create_vocabulary_network(doc): + """ + Genera el grafo de red de vocabulario. + """ + G = nx.Graph() + + # Crear nodos para palabras significativas + words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] + word_freq = Counter(words) + + # Añadir nodos con tamaño basado en frecuencia + for word, freq in word_freq.items(): + G.add_node(word, size=freq) + + # Crear conexiones basadas en co-ocurrencia + window_size = 5 + for i in range(len(words) - window_size): + window = words[i:i+window_size] + for w1, w2 in combinations(set(window), 2): + if G.has_edge(w1, w2): + G[w1][w2]['weight'] += 1 + else: + G.add_edge(w1, w2, weight=1) + + # Crear visualización + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + + # Dibujar nodos + nx.draw_networkx_nodes(G, pos, + node_size=[G.nodes[node]['size']*100 for node in G.nodes], + node_color='lightblue', + alpha=0.7) + + # Dibujar conexiones + nx.draw_networkx_edges(G, pos, + width=[G[u][v]['weight']*0.5 for u,v in G.edges], + alpha=0.5) + + # Añadir etiquetas + nx.draw_networkx_labels(G, pos) + + plt.title("Red de Vocabulario") + plt.axis('off') + return fig + +def create_syntax_complexity_graph(doc): + """ + Genera el diagrama de arco de complejidad sintáctica. + Muestra la estructura de dependencias con colores basados en la complejidad. + """ + try: + # Preparar datos para la visualización + sentences = list(doc.sents) + if not sentences: + return None + + # Crear figura para el gráfico + fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) + + # Colores para diferentes niveles de profundidad + depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) + + y_offset = 0 + max_x = 0 + + for sent in sentences: + words = [token.text for token in sent] + x_positions = range(len(words)) + max_x = max(max_x, len(words)) + + # Dibujar palabras + plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) + plt.scatter(x_positions, [y_offset] * len(words), alpha=0) + + # Añadir texto + for i, word in enumerate(words): + plt.annotate(word, (i, y_offset), xytext=(0, -10), + textcoords='offset points', ha='center') + + # Dibujar arcos de dependencia + for token in sent: + if token.dep_ != "ROOT": + # Calcular profundidad de dependencia + depth = 0 + current = token + while current.head != current: + depth += 1 + current = current.head + + # Determinar posiciones para el arco + start = token.i - sent[0].i + end = token.head.i - sent[0].i + + # Altura del arco basada en la distancia entre palabras + height = 0.5 * abs(end - start) + + # Color basado en la profundidad + color = depth_colors[min(depth, len(depth_colors)-1)] + + # Crear arco + arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), + width=abs(end - start), + height=height, + angle=0, + theta1=0, + theta2=180, + color=color, + alpha=0.6) + ax.add_patch(arc) + + y_offset -= 2 + + # Configurar el gráfico + plt.xlim(-1, max_x) + plt.ylim(y_offset - 1, 1) + plt.axis('off') + plt.title("Complejidad Sintáctica") + + return fig + + except Exception as e: + logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") + return None + + +def create_cohesion_heatmap(doc): + """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones.""" + try: + sentences = list(doc.sents) + n_sentences = len(sentences) + + if n_sentences < 2: + return None + + similarity_matrix = np.zeros((n_sentences, n_sentences)) + + for i in range(n_sentences): + for j in range(n_sentences): + sent1_lemmas = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_lemmas = {token.lemma_ for token in sentences[j] + if token.is_alpha and not token.is_stop} + + if sent1_lemmas and sent2_lemmas: + intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí + union = len(sent1_lemmas | sent2_lemmas) # Y aquí + similarity_matrix[i, j] = intersection / union if union > 0 else 0 + + # Crear visualización + fig, ax = plt.subplots(figsize=(10, 8)) + + sns.heatmap(similarity_matrix, + cmap='YlOrRd', + square=True, + xticklabels=False, + yticklabels=False, + cbar_kws={'label': 'Cohesión'}, + ax=ax) + + plt.title("Mapa de Cohesión Textual") + plt.xlabel("Oraciones") + plt.ylabel("Oraciones") + + plt.tight_layout() + return fig + + except Exception as e: + logger.error(f"Error en create_cohesion_heatmap: {str(e)}") + return None \ No newline at end of file diff --git a/modules/studentact/current_situation_interface--FAIL.py b/modules/studentact/current_situation_interface--FAIL.py new file mode 100644 index 0000000000000000000000000000000000000000..cae6e5be1412c8006108b6c8c77719bd5d684e63 --- /dev/null +++ b/modules/studentact/current_situation_interface--FAIL.py @@ -0,0 +1,608 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np + +from ..database.current_situation_mongo_db import store_current_situation_result + +from ..database.writing_progress_mongo_db import ( + store_writing_baseline, + store_writing_progress, + get_writing_baseline, + get_writing_progress, + get_latest_writing_metrics +) + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) +#################################### + +TEXT_TYPES = { + 'academic_article': { + 'name': 'Artículo Académico', + 'thresholds': { + 'vocabulary': {'min': 0.70, 'target': 0.85}, + 'structure': {'min': 0.75, 'target': 0.90}, + 'cohesion': {'min': 0.65, 'target': 0.80}, + 'clarity': {'min': 0.70, 'target': 0.85} + } + }, + 'student_essay': { + 'name': 'Trabajo Universitario', + 'thresholds': { + 'vocabulary': {'min': 0.60, 'target': 0.75}, + 'structure': {'min': 0.65, 'target': 0.80}, + 'cohesion': {'min': 0.55, 'target': 0.70}, + 'clarity': {'min': 0.60, 'target': 0.75} + } + }, + 'general_communication': { + 'name': 'Comunicación General', + 'thresholds': { + 'vocabulary': {'min': 0.50, 'target': 0.65}, + 'structure': {'min': 0.55, 'target': 0.70}, + 'cohesion': {'min': 0.45, 'target': 0.60}, + 'clarity': {'min': 0.50, 'target': 0.65} + } + } +} +#################################### + +ANALYSIS_DIMENSION_MAPPING = { + 'morphosyntactic': { + 'primary': ['vocabulary', 'clarity'], + 'secondary': ['structure'], + 'tools': ['arc_diagrams', 'word_repetition'] + }, + 'semantic': { + 'primary': ['cohesion', 'structure'], + 'secondary': ['vocabulary'], + 'tools': ['concept_graphs', 'semantic_networks'] + }, + 'discourse': { + 'primary': ['cohesion', 'structure'], + 'secondary': ['clarity'], + 'tools': ['comparative_analysis'] + } +} + +############################################################################## +# FUNCIÓN PRINCIPAL +############################################################################## +def display_current_situation_interface(lang_code, nlp_models, t): + """ + TAB: + - Expander con radio para tipo de texto + Contenedor-1 con expanders: + - Expander "Métricas de la línea base" + - Expander "Métricas de la iteración" + Contenedor-2 (2 columnas): + - Col1: Texto base + - Col2: Texto iteración + Al final, Recomendaciones en un expander (una sola “fila”). + """ + + # --- Inicializar session_state --- + if 'base_text' not in st.session_state: + st.session_state.base_text = "" + if 'iter_text' not in st.session_state: + st.session_state.iter_text = "" + if 'base_metrics' not in st.session_state: + st.session_state.base_metrics = {} + if 'iter_metrics' not in st.session_state: + st.session_state.iter_metrics = {} + if 'show_base' not in st.session_state: + st.session_state.show_base = False + if 'show_iter' not in st.session_state: + st.session_state.show_iter = False + + # Creamos un tab + tabs = st.tabs(["Análisis de Texto"]) + with tabs[0]: + # [1] Expander con radio para seleccionar tipo de texto + with st.expander("Selecciona el tipo de texto", expanded=True): + text_type = st.radio( + "¿Qué tipo de texto quieres analizar?", + options=list(TEXT_TYPES.keys()), + format_func=lambda x: TEXT_TYPES[x]['name'], + index=0 + ) + st.session_state.current_text_type = text_type + + st.markdown("---") + + # --------------------------------------------------------------------- + # CONTENEDOR-1: Expanders para métricas base e iteración + # --------------------------------------------------------------------- + with st.container(): + # --- Expander para la línea base --- + with st.expander("Métricas de la línea base", expanded=False): + if st.session_state.show_base and st.session_state.base_metrics: + # Mostramos los valores reales + display_metrics_in_one_row(st.session_state.base_metrics, text_type) + else: + # Mostramos la maqueta vacía + display_empty_metrics_row() + + # --- Expander para la iteración --- + with st.expander("Métricas de la iteración", expanded=False): + if st.session_state.show_iter and st.session_state.iter_metrics: + display_metrics_in_one_row(st.session_state.iter_metrics, text_type) + else: + display_empty_metrics_row() + + st.markdown("---") + + # --------------------------------------------------------------------- + # CONTENEDOR-2: 2 columnas (texto base | texto iteración) + # --------------------------------------------------------------------- + with st.container(): + col_left, col_right = st.columns(2) + + # Columna izquierda: Texto base + with col_left: + st.markdown("**Texto base**") + text_base = st.text_area( + label="", + value=st.session_state.base_text, + key="text_base_area", + placeholder="Pega aquí tu texto base", + ) + if st.button("Analizar Base"): + with st.spinner("Analizando texto base..."): + doc = nlp_models[lang_code](text_base) + metrics = analyze_text_dimensions(doc) + + st.session_state.base_text = text_base + st.session_state.base_metrics = metrics + st.session_state.show_base = True + # Al analizar base, reiniciamos la iteración + st.session_state.show_iter = False + + # Columna derecha: Texto iteración + with col_right: + st.markdown("**Texto de iteración**") + text_iter = st.text_area( + label="", + value=st.session_state.iter_text, + key="text_iter_area", + placeholder="Edita y mejora tu texto...", + disabled=not st.session_state.show_base + ) + if st.button("Analizar Iteración", disabled=not st.session_state.show_base): + with st.spinner("Analizando iteración..."): + doc = nlp_models[lang_code](text_iter) + metrics = analyze_text_dimensions(doc) + + st.session_state.iter_text = text_iter + st.session_state.iter_metrics = metrics + st.session_state.show_iter = True + + # --------------------------------------------------------------------- + # Recomendaciones al final en un expander (una sola “fila”) + # --------------------------------------------------------------------- + if st.session_state.show_iter: + with st.expander("Recomendaciones", expanded=False): + reco_list = [] + for dimension, values in st.session_state.iter_metrics.items(): + score = values['normalized_score'] + target = TEXT_TYPES[text_type]['thresholds'][dimension]['target'] + if score < target: + # Aquí, en lugar de get_dimension_suggestions, unificamos con: + suggestions = suggest_improvement_tools_list(dimension) + reco_list.extend(suggestions) + + if reco_list: + # Todas en una sola línea + st.write(" | ".join(reco_list)) + else: + st.info("¡No hay recomendaciones! Todas las métricas superan la meta.") + + + + + + + +#Funciones de visualización ################################## +############################################################ +# Funciones de visualización para las métricas +############################################################ + +def display_metrics_in_one_row(metrics, text_type): + """ + Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad) + en una sola línea, usando 4 columnas con ancho uniforme. + """ + thresholds = TEXT_TYPES[text_type]['thresholds'] + dimensions = ["vocabulary", "structure", "cohesion", "clarity"] + + col1, col2, col3, col4 = st.columns([1,1,1,1]) + cols = [col1, col2, col3, col4] + + for dim, col in zip(dimensions, cols): + score = metrics[dim]['normalized_score'] + target = thresholds[dim]['target'] + min_val = thresholds[dim]['min'] + + if score < min_val: + status = "⚠️ Por mejorar" + color = "inverse" + elif score < target: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + with col: + col.metric( + label=dim.capitalize(), + value=f"{score:.2f}", + delta=f"{status} (Meta: {target:.2f})", + delta_color=color, + border=True + ) + + +# ------------------------------------------------------------------------- +# Función que muestra una fila de 4 columnas “vacías” +# ------------------------------------------------------------------------- +def display_empty_metrics_row(): + """ + Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad). + Cada columna se dibuja con st.metric en blanco (“-”). + """ + empty_cols = st.columns([1,1,1,1]) + labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"] + + for col, lbl in zip(empty_cols, labels): + with col: + col.metric( + label=lbl, + value="-", + delta="", + border=True + ) + + + +#################################################################### + +def display_metrics_analysis(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") + +def display_comparison_results(baseline_metrics, current_metrics): + """Muestra comparación entre línea base y métricas actuales""" + + # Crear columnas para métricas y gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + with metrics_col: + for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: + baseline = baseline_metrics[dimension]['normalized_score'] + current = current_metrics[dimension]['normalized_score'] + delta = current - baseline + + st.metric( + dimension.title(), + f"{current:.2f}", + f"{delta:+.2f}", + delta_color="normal" if delta >= 0 else "inverse" + ) + + # Sugerir herramientas de mejora + if delta < 0: + suggest_improvement_tools(dimension) + + with graph_col: + display_radar_chart_comparison( + baseline_metrics, + current_metrics + ) + +def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False): + """ + Muestra métricas y opcionalmente sugerencias de mejora. + Args: + metrics: Diccionario con las métricas analizadas + text_type: Tipo de texto seleccionado + title: Título para las métricas ("Base" o "Iteración") + show_suggestions: Booleano para mostrar sugerencias + """ + try: + thresholds = TEXT_TYPES[text_type]['thresholds'] + + st.markdown(f"### Métricas {title}") + + for dimension, values in metrics.items(): + score = values['normalized_score'] + target = thresholds[dimension]['target'] + min_val = thresholds[dimension]['min'] + + # Determinar estado y color + if score < min_val: + status = "⚠️ Por mejorar" + color = "inverse" + elif score < target: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + # Mostrar métrica + st.metric( + dimension.title(), + f"{score:.2f}", + f"{status} (Meta: {target:.2f})", + delta_color=color, + help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}" + ) + + # Mostrar sugerencias si es necesario + if show_suggestions and score < target: + suggest_improvement_tools(dimension) + + # Agregar espacio entre métricas + st.markdown("
", unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando métricas: {str(e)}") + st.error("Error al mostrar métricas") + +def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): + """ + Muestra el gráfico radar con los resultados. + Args: + metrics_config: Configuración actual de métricas + thresholds: Umbrales para las métricas + baseline_metrics: Métricas de línea base (opcional) + """ + try: + # Preparar datos para el gráfico + categories = [m['label'] for m in metrics_config] + values_current = [m['value'] for m in metrics_config] + min_values = [m['thresholds']['min'] for m in metrics_config] + target_values = [m['thresholds']['target'] for m in metrics_config] + + # Crear y configurar gráfico + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111, projection='polar') + + # Configurar radar + angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] + angles += angles[:1] + values_current += values_current[:1] + min_values += min_values[:1] + target_values += target_values[:1] + + # Configurar ejes + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=10) + circle_ticks = np.arange(0, 1.1, 0.2) + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar áreas de umbrales + ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, + label='Mínimo', alpha=0.5) + ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, + label='Meta', alpha=0.5) + ax.fill_between(angles, target_values, [1]*len(angles), + color='#2ecc71', alpha=0.1) + ax.fill_between(angles, [0]*len(angles), min_values, + color='#e74c3c', alpha=0.1) + + # Si hay línea base, dibujarla primero + if baseline_metrics is not None: + values_baseline = [baseline_metrics[m['key']]['normalized_score'] + for m in metrics_config] + values_baseline += values_baseline[:1] + ax.plot(angles, values_baseline, '#888888', linewidth=2, + label='Línea base', linestyle='--') + ax.fill(angles, values_baseline, '#888888', alpha=0.1) + + # Dibujar valores actuales + label = 'Actual' if baseline_metrics else 'Tu escritura' + color = '#3498db' if baseline_metrics else '#3498db' + + ax.plot(angles, values_current, color, linewidth=2, label=label) + ax.fill(angles, values_current, color, alpha=0.2) + + # Ajustar leyenda + legend_handles = [] + if baseline_metrics: + legend_handles.extend([ + plt.Line2D([], [], color='#888888', linestyle='--', + label='Línea base'), + plt.Line2D([], [], color='#3498db', label='Actual') + ]) + else: + legend_handles.extend([ + plt.Line2D([], [], color='#3498db', label='Tu escritura') + ]) + + legend_handles.extend([ + plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), + plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') + ]) + + ax.legend( + handles=legend_handles, + loc='upper right', + bbox_to_anchor=(1.3, 1.1), + fontsize=10, + frameon=True, + facecolor='white', + edgecolor='none', + shadow=True + ) + + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error mostrando gráfico radar: {str(e)}") + st.error("Error al mostrar el gráfico") + +#Funciones auxiliares ################################## + + +############################################################ +# Unificamos la lógica de sugerencias en una función +############################################################ +def suggest_improvement_tools_list(dimension): + """ + Retorna en forma de lista las herramientas sugeridas + basadas en 'ANALYSIS_DIMENSION_MAPPING'. + """ + suggestions = [] + for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): + # Verificamos si la dimensión está en primary o secondary + if dimension in mapping['primary'] or dimension in mapping['secondary']: + suggestions.extend(mapping['tools']) + # Si no hay nada, al menos retornamos un placeholder + return suggestions if suggestions else ["Sin sugerencias específicas."] + + +def prepare_metrics_config(metrics, text_type='student_essay'): + """ + Prepara la configuración de métricas en el mismo formato que display_results. + Args: + metrics: Diccionario con las métricas analizadas + text_type: Tipo de texto para los umbrales + Returns: + list: Lista de configuraciones de métricas + """ + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Usar la misma estructura que en display_results + return [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + diff --git a/modules/studentact/current_situation_interface-v1.py b/modules/studentact/current_situation_interface-v1.py new file mode 100644 index 0000000000000000000000000000000000000000..6119f6bf146976da43fe9311b5fc54551173341a --- /dev/null +++ b/modules/studentact/current_situation_interface-v1.py @@ -0,0 +1,272 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_reference_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, +) + +logger = logging.getLogger(__name__) +#################################### +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas. + """ + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + st.markdown("## Análisis Inicial de Escritura") + + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + st.markdown("### Ingresa tu texto") + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.text_input = st.session_state.text_area + st.session_state.show_results = False # Resetear resultados cuando el texto cambia + + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + on_change=on_text_change, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + # Botón de análisis + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + # Procesar texto y obtener métricas + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # Actualizar estado con nuevos resultados + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + + # Mantener el texto en el estado + st.session_state.text_input = text_input + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + display_recommendations(st.session_state.current_metrics, t) + + # Opción para ver detalles + with st.expander("🔍 Ver análisis detallado", expanded=False): + display_current_situation_visual( + st.session_state.current_doc, + st.session_state.current_metrics + ) + +def display_current_situation_visual(doc, metrics): + """ + Muestra visualizaciones detalladas del análisis. + """ + try: + st.markdown("### 📊 Visualizaciones Detalladas") + + # 1. Visualización de vocabulario + with st.expander("Análisis de Vocabulario", expanded=True): + vocab_graph = create_vocabulary_network(doc) + if vocab_graph: + st.pyplot(vocab_graph) + plt.close(vocab_graph) + + # 2. Visualización de estructura + with st.expander("Análisis de Estructura", expanded=True): + syntax_graph = create_syntax_complexity_graph(doc) + if syntax_graph: + st.pyplot(syntax_graph) + plt.close(syntax_graph) + + # 3. Visualización de cohesión + with st.expander("Análisis de Cohesión", expanded=True): + cohesion_graph = create_cohesion_heatmap(doc) + if cohesion_graph: + st.pyplot(cohesion_graph) + plt.close(cohesion_graph) + + except Exception as e: + logger.error(f"Error en visualización: {str(e)}") + st.error("Error al generar las visualizaciones") + + +#################################### +def display_recommendations(metrics, t): + """ + Muestra recomendaciones basadas en las métricas del texto. + """ + # 1. Resumen Visual con Explicación + st.markdown("### 📊 Resumen de tu Análisis") + + # Explicación del sistema de medición + st.markdown(""" + **¿Cómo interpretar los resultados?** + + Cada métrica se mide en una escala de 0.0 a 1.0, donde: + - 0.0 - 0.4: Necesita atención prioritaria + - 0.4 - 0.6: En desarrollo + - 0.6 - 0.8: Buen nivel + - 0.8 - 1.0: Nivel avanzado + """) + + # Métricas con explicaciones detalladas + col1, col2, col3, col4 = st.columns(4) + + with col1: + st.metric( + "Vocabulario", + f"{metrics['vocabulary']['normalized_score']:.2f}", + help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Vocabulario** + - Evalúa la diversidad léxica + - Considera palabras únicas vs. totales + - Detecta repeticiones innecesarias + - Valor óptimo: > 0.7 + """) + + with col2: + st.metric( + "Estructura", + f"{metrics['structure']['normalized_score']:.2f}", + help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Estructura** + - Analiza la complejidad sintáctica + - Mide variación en construcciones + - Evalúa longitud de oraciones + - Valor óptimo: > 0.6 + """) + + with col3: + st.metric( + "Cohesión", + f"{metrics['cohesion']['normalized_score']:.2f}", + help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Cohesión** + - Mide conexiones entre ideas + - Evalúa uso de conectores + - Analiza progresión temática + - Valor óptimo: > 0.65 + """) + + with col4: + st.metric( + "Claridad", + f"{metrics['clarity']['normalized_score']:.2f}", + help="Evalúa la facilidad de comprensión general de tu texto." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Claridad** + - Evalúa comprensibilidad + - Considera estructura lógica + - Mide precisión expresiva + - Valor óptimo: > 0.7 + """) + + st.markdown("---") + + # 2. Recomendaciones basadas en puntuaciones + st.markdown("### 💡 Recomendaciones Personalizadas") + + # Recomendaciones morfosintácticas + if metrics['structure']['normalized_score'] < 0.6: + st.warning(""" + #### 📝 Análisis Morfosintáctico Recomendado + + **Tu nivel actual sugiere que sería beneficioso:** + 1. Realizar el análisis morfosintáctico de 3 párrafos diferentes + 2. Practicar la combinación de oraciones simples en compuestas + 3. Identificar y clasificar tipos de oraciones en textos académicos + 4. Ejercitar la variación sintáctica + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico* + """) + + # Recomendaciones semánticas + if metrics['vocabulary']['normalized_score'] < 0.7: + st.warning(""" + #### 📚 Análisis Semántico Recomendado + + **Para mejorar tu vocabulario y expresión:** + A. Realiza el análisis semántico de un texto académico + B. Identifica y agrupa campos semánticos relacionados + C. Practica la sustitución léxica en tus párrafos + D. Construye redes de conceptos sobre tu tema + E. Analiza las relaciones entre ideas principales + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico* + """) + + # Recomendaciones de cohesión + if metrics['cohesion']['normalized_score'] < 0.65: + st.warning(""" + #### 🔄 Análisis del Discurso Recomendado + + **Para mejorar la conexión entre ideas:** + 1. Realizar el análisis del discurso de un texto modelo + 2. Practicar el uso de diferentes conectores textuales + 3. Identificar cadenas de referencia en textos académicos + 4. Ejercitar la progresión temática en tus escritos + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso* + """) + + # Botón de acción + st.markdown("---") + col1, col2, col3 = st.columns([1,2,1]) + with col2: + st.button( + "🎯 Comenzar ejercicios recomendados", + type="primary", + use_container_width=True, + key="start_exercises" + ) \ No newline at end of file diff --git a/modules/studentact/current_situation_interface-v2.py b/modules/studentact/current_situation_interface-v2.py new file mode 100644 index 0000000000000000000000000000000000000000..64316c76a1bc41b01bdfd35d76e7f47117aefa24 --- /dev/null +++ b/modules/studentact/current_situation_interface-v2.py @@ -0,0 +1,291 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key + +from ..database.current_situation_mongo_db import store_current_situation_result + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_reference_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, +) + +logger = logging.getLogger(__name__) +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas. + """ + try: + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + st.markdown("## Análisis Inicial de Escritura") + + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + st.markdown("### Ingresa tu texto") + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.text_input = st.session_state.text_area + st.session_state.show_results = False # Resetear resultados cuando el texto cambia + + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + on_change=on_text_change, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + # Procesar texto y obtener métricas + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # Guardar en MongoDB + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None # Por ahora sin feedback + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + # Actualizar estado + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + st.session_state.text_input = text_input + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + display_recommendations(st.session_state.current_metrics, t) + + # Opción para ver detalles + with st.expander("🔍 Ver análisis detallado", expanded=False): + display_current_situation_visual( + st.session_state.current_doc, + st.session_state.current_metrics + ) + + except Exception as e: + logger.error(f"Error en interfaz: {str(e)}") + st.error("Ocurrió un error. Por favor, intente de nuevo.") + + + +def display_current_situation_visual(doc, metrics): + """ + Muestra visualizaciones detalladas del análisis. + """ + try: + st.markdown("### 📊 Visualizaciones Detalladas") + + # 1. Visualización de vocabulario + with st.expander("Análisis de Vocabulario", expanded=True): + vocab_graph = create_vocabulary_network(doc) + if vocab_graph: + st.pyplot(vocab_graph) + plt.close(vocab_graph) + + # 2. Visualización de estructura + with st.expander("Análisis de Estructura", expanded=True): + syntax_graph = create_syntax_complexity_graph(doc) + if syntax_graph: + st.pyplot(syntax_graph) + plt.close(syntax_graph) + + # 3. Visualización de cohesión + with st.expander("Análisis de Cohesión", expanded=True): + cohesion_graph = create_cohesion_heatmap(doc) + if cohesion_graph: + st.pyplot(cohesion_graph) + plt.close(cohesion_graph) + + except Exception as e: + logger.error(f"Error en visualización: {str(e)}") + st.error("Error al generar las visualizaciones") + + +#################################### +def display_recommendations(metrics, t): + """ + Muestra recomendaciones basadas en las métricas del texto. + """ + # 1. Resumen Visual con Explicación + st.markdown("### 📊 Resumen de tu Análisis") + + # Explicación del sistema de medición + st.markdown(""" + **¿Cómo interpretar los resultados?** + + Cada métrica se mide en una escala de 0.0 a 1.0, donde: + - 0.0 - 0.4: Necesita atención prioritaria + - 0.4 - 0.6: En desarrollo + - 0.6 - 0.8: Buen nivel + - 0.8 - 1.0: Nivel avanzado + """) + + # Métricas con explicaciones detalladas + col1, col2, col3, col4 = st.columns(4) + + with col1: + st.metric( + "Vocabulario", + f"{metrics['vocabulary']['normalized_score']:.2f}", + help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Vocabulario** + - Evalúa la diversidad léxica + - Considera palabras únicas vs. totales + - Detecta repeticiones innecesarias + - Valor óptimo: > 0.7 + """) + + with col2: + st.metric( + "Estructura", + f"{metrics['structure']['normalized_score']:.2f}", + help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Estructura** + - Analiza la complejidad sintáctica + - Mide variación en construcciones + - Evalúa longitud de oraciones + - Valor óptimo: > 0.6 + """) + + with col3: + st.metric( + "Cohesión", + f"{metrics['cohesion']['normalized_score']:.2f}", + help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Cohesión** + - Mide conexiones entre ideas + - Evalúa uso de conectores + - Analiza progresión temática + - Valor óptimo: > 0.65 + """) + + with col4: + st.metric( + "Claridad", + f"{metrics['clarity']['normalized_score']:.2f}", + help="Evalúa la facilidad de comprensión general de tu texto." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Claridad** + - Evalúa comprensibilidad + - Considera estructura lógica + - Mide precisión expresiva + - Valor óptimo: > 0.7 + """) + + st.markdown("---") + + # 2. Recomendaciones basadas en puntuaciones + st.markdown("### 💡 Recomendaciones Personalizadas") + + # Recomendaciones morfosintácticas + if metrics['structure']['normalized_score'] < 0.6: + st.warning(""" + #### 📝 Análisis Morfosintáctico Recomendado + + **Tu nivel actual sugiere que sería beneficioso:** + 1. Realizar el análisis morfosintáctico de 3 párrafos diferentes + 2. Practicar la combinación de oraciones simples en compuestas + 3. Identificar y clasificar tipos de oraciones en textos académicos + 4. Ejercitar la variación sintáctica + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico* + """) + + # Recomendaciones semánticas + if metrics['vocabulary']['normalized_score'] < 0.7: + st.warning(""" + #### 📚 Análisis Semántico Recomendado + + **Para mejorar tu vocabulario y expresión:** + A. Realiza el análisis semántico de un texto académico + B. Identifica y agrupa campos semánticos relacionados + C. Practica la sustitución léxica en tus párrafos + D. Construye redes de conceptos sobre tu tema + E. Analiza las relaciones entre ideas principales + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico* + """) + + # Recomendaciones de cohesión + if metrics['cohesion']['normalized_score'] < 0.65: + st.warning(""" + #### 🔄 Análisis del Discurso Recomendado + + **Para mejorar la conexión entre ideas:** + 1. Realizar el análisis del discurso de un texto modelo + 2. Practicar el uso de diferentes conectores textuales + 3. Identificar cadenas de referencia en textos académicos + 4. Ejercitar la progresión temática en tus escritos + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso* + """) + + # Botón de acción + st.markdown("---") + col1, col2, col3 = st.columns([1,2,1]) + with col2: + st.button( + "🎯 Comenzar ejercicios recomendados", + type="primary", + use_container_width=True, + key="start_exercises" + ) diff --git a/modules/studentact/current_situation_interface-v3.py b/modules/studentact/current_situation_interface-v3.py new file mode 100644 index 0000000000000000000000000000000000000000..599801971ea94f92e107469154a201bf248825cd --- /dev/null +++ b/modules/studentact/current_situation_interface-v3.py @@ -0,0 +1,190 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np +from ..database.current_situation_mongo_db import store_current_situation_result + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_reference_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada con gráfico de radar para visualizar métricas. + """ + try: + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + st.markdown("## Análisis Inicial de Escritura") + + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + #st.markdown("### Ingresa tu texto") + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.text_input = st.session_state.text_area + st.session_state.show_results = False + + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + on_change=on_text_change, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # Guardar en MongoDB + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + st.session_state.text_input = text_input + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + display_radar_chart(st.session_state.current_metrics) + + except Exception as e: + logger.error(f"Error en interfaz: {str(e)}") + st.error("Ocurrió un error. Por favor, intente de nuevo.") + +def display_radar_chart(metrics): + """ + Muestra un gráfico de radar con las métricas del usuario y el patrón ideal. + """ + try: + # Container con proporción reducida + with st.container(): + # Métricas en la parte superior + col1, col2, col3, col4 = st.columns(4) + with col1: + st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00") + with col2: + st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00") + with col3: + st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00") + with col4: + st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00") + + # Contenedor para el gráfico con ancho controlado + _, graph_col, _ = st.columns([1,2,1]) + + with graph_col: + # Preparar datos + categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad'] + values_user = [ + metrics['vocabulary']['normalized_score'], + metrics['structure']['normalized_score'], + metrics['cohesion']['normalized_score'], + metrics['clarity']['normalized_score'] + ] + values_pattern = [1.0, 1.0, 1.0, 1.0] # Patrón ideal + + # Crear figura más compacta + fig = plt.figure(figsize=(6, 6)) + ax = fig.add_subplot(111, projection='polar') + + # Número de variables + num_vars = len(categories) + + # Calcular ángulos + angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)] + angles += angles[:1] + + # Extender valores para cerrar polígonos + values_user += values_user[:1] + values_pattern += values_pattern[:1] + + # Configurar ejes y etiquetas + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=8) + + # Círculos concéntricos y etiquetas + circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar patrón ideal + ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5) + ax.fill(angles, values_pattern, 'g', alpha=0.1) + + # Dibujar valores del usuario + ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura') + ax.fill(angles, values_user, 'b', alpha=0.2) + + # Leyenda + ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8) + + # Ajustes finales + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error generando gráfico de radar: {str(e)}") + st.error("Error al generar la visualización") \ No newline at end of file diff --git a/modules/studentact/current_situation_interface.py b/modules/studentact/current_situation_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..80e58058ae28db1d3ce17da5cbe4615f2233bd13 --- /dev/null +++ b/modules/studentact/current_situation_interface.py @@ -0,0 +1,321 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np +from ..database.current_situation_mongo_db import store_current_situation_result + +# Importaciones locales +from translations import get_translations + +# Importamos la función de recomendaciones personalizadas si existe +try: + from .claude_recommendations import display_personalized_recommendations +except ImportError: + # Si no existe el módulo, definimos una función placeholder + def display_personalized_recommendations(text, metrics, text_type, lang_code, t): + st.warning("Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.") + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) + +#################################### +# Definición global de los tipos de texto y sus umbrales +TEXT_TYPES = { + 'academic_article': { + 'name': 'Artículo Académico', + 'thresholds': { + 'vocabulary': {'min': 0.70, 'target': 0.85}, + 'structure': {'min': 0.75, 'target': 0.90}, + 'cohesion': {'min': 0.65, 'target': 0.80}, + 'clarity': {'min': 0.70, 'target': 0.85} + } + }, + 'student_essay': { + 'name': 'Trabajo Universitario', + 'thresholds': { + 'vocabulary': {'min': 0.60, 'target': 0.75}, + 'structure': {'min': 0.65, 'target': 0.80}, + 'cohesion': {'min': 0.55, 'target': 0.70}, + 'clarity': {'min': 0.60, 'target': 0.75} + } + }, + 'general_communication': { + 'name': 'Comunicación General', + 'thresholds': { + 'vocabulary': {'min': 0.50, 'target': 0.65}, + 'structure': {'min': 0.55, 'target': 0.70}, + 'cohesion': {'min': 0.45, 'target': 0.60}, + 'clarity': {'min': 0.50, 'target': 0.65} + } + } +} +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada con gráfico de radar para visualizar métricas. + """ + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'text_area' not in st.session_state: # Añadir inicialización de text_area + st.session_state.text_area = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + if 'current_recommendations' not in st.session_state: + st.session_state.current_recommendations = None + + try: + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + # Función para manejar cambios de texto + if text_input != st.session_state.text_input: + st.session_state.text_input = text_input + st.session_state.show_results = False + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + # Primero los radio buttons para tipo de texto + st.markdown("### Tipo de texto") + text_type = st.radio( + label="Tipo de texto", + options=list(TEXT_TYPES.keys()), + format_func=lambda x: TEXT_TYPES[x]['name'], + horizontal=True, + key="text_type_radio", + label_visibility="collapsed", + help="Selecciona el tipo de texto para ajustar los criterios de evaluación" + ) + + st.session_state.current_text_type = text_type + + # Crear subtabs + subtab1, subtab2 = st.tabs(["Diagnóstico", "Recomendaciones"]) + + # Mostrar resultados en el primer subtab + with subtab1: + display_diagnosis( + metrics=st.session_state.current_metrics, + text_type=text_type + ) + + # Mostrar recomendaciones en el segundo subtab + with subtab2: + # Llamar directamente a la función de recomendaciones personalizadas + display_personalized_recommendations( + text=text_input, + metrics=st.session_state.current_metrics, + text_type=text_type, + lang_code=lang_code, + t=t + ) + + except Exception as e: + logger.error(f"Error en interfaz principal: {str(e)}") + st.error("Ocurrió un error al cargar la interfaz") + +def display_diagnosis(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + # Gráfico radar en la columna derecha + with graph_col: + display_radar_chart(metrics_config, thresholds) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") + +def display_radar_chart(metrics_config, thresholds): + """ + Muestra el gráfico radar con los resultados. + """ + try: + # Preparar datos para el gráfico + categories = [m['label'] for m in metrics_config] + values_user = [m['value'] for m in metrics_config] + min_values = [m['thresholds']['min'] for m in metrics_config] + target_values = [m['thresholds']['target'] for m in metrics_config] + + # Crear y configurar gráfico + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111, projection='polar') + + # Configurar radar + angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] + angles += angles[:1] + values_user += values_user[:1] + min_values += min_values[:1] + target_values += target_values[:1] + + # Configurar ejes + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=10) + circle_ticks = np.arange(0, 1.1, 0.2) + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar áreas de umbrales + ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5) + ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5) + ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) + ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) + + # Dibujar valores del usuario + ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura') + ax.fill(angles, values_user, '#3498db', alpha=0.2) + + # Ajustar leyenda + ax.legend( + loc='upper right', + bbox_to_anchor=(1.3, 1.1), + fontsize=10, + frameon=True, + facecolor='white', + edgecolor='none', + shadow=True + ) + + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error mostrando gráfico radar: {str(e)}") + st.error("Error al mostrar el gráfico") \ No newline at end of file diff --git a/modules/studentact/student_activities.py b/modules/studentact/student_activities.py new file mode 100644 index 0000000000000000000000000000000000000000..40b8e2a4ed849660561e2e7fb030d269f9080c07 --- /dev/null +++ b/modules/studentact/student_activities.py @@ -0,0 +1,111 @@ +#modules/studentact/student_activities.py + +import streamlit as st +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +import base64 +from io import BytesIO +from reportlab.pdfgen import canvas +from reportlab.lib.pagesizes import letter +from docx import Document +from odf.opendocument import OpenDocumentText +from odf.text import P +from datetime import datetime, timedelta +import pytz +import logging + +# Configuración de logging +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Importaciones locales +try: + from ..database.morphosintax_mongo_db import get_student_morphosyntax_data + from ..database.semantic_mongo_db import get_student_semantic_data + from ..database.discourse_mongo_db import get_student_discourse_data + + from ..database.chat_mongo_db import get_chat_history + + logger.info("Importaciones locales exitosas") +except ImportError as e: + logger.error(f"Error en las importaciones locales: {e}") + +def display_student_progress(username, lang_code, t): + logger.debug(f"Iniciando display_student_progress para {username}") + + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + # Obtener los datos del estudiante + student_data = get_student_morphosyntax_data(username) + + if not student_data or len(student_data.get('entries', [])) == 0: + logger.warning(f"No se encontraron datos para el estudiante {username}") + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + logger.debug(f"Datos del estudiante obtenidos: {len(student_data['entries'])} entradas") + + # Resumen de actividades + with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True): + total_entries = len(student_data['entries']) + st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}") + + # Gráfico de tipos de análisis + try: + analysis_types = [entry.get('analysis_type', 'unknown') for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + fig, ax = plt.subplots() + sns.barplot(x=analysis_counts.index, y=analysis_counts.values, ax=ax) + ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados")) + ax.set_xlabel(t.get("analysis_type", "Tipo de análisis")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + except Exception as e: + logger.error(f"Error al crear el gráfico: {e}") + st.error("No se pudo crear el gráfico de tipos de análisis.") + + # Función para generar el contenido del archivo de actividades de las últimas 48 horas + def generate_activity_content_48h(): + content = f"Actividades de {username} en las últimas 48 horas\n\n" + + two_days_ago = datetime.now(pytz.utc) - timedelta(days=2) + + try: + morphosyntax_analyses = get_student_morphosyntax_data(username) + recent_morphosyntax = [a for a in morphosyntax_analyses if datetime.fromisoformat(a['timestamp']) > two_days_ago] + + content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n" + for analysis in recent_morphosyntax: + content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n" + + chat_history = get_chat_history(username, None) + recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago] + + content += f"\nConversaciones de chat: {len(recent_chats)}\n" + for chat in recent_chats: + content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n" + except Exception as e: + logger.error(f"Error al generar el contenido de actividades: {e}") + content += "Error al recuperar los datos de actividades.\n" + + return content + + # Botones para descargar el histórico de actividades de las últimas 48 horas + st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)")) + if st.button("Generar reporte de 48 horas"): + try: + report_content = generate_activity_content_48h() + st.text_area("Reporte de 48 horas", report_content, height=300) + st.download_button( + label="Descargar TXT (48h)", + data=report_content, + file_name="actividades_48h.txt", + mime="text/plain" + ) + except Exception as e: + logger.error(f"Error al generar el reporte: {e}") + st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.") + + logger.debug("Finalizando display_student_progress") \ No newline at end of file diff --git a/modules/studentact/student_activities_v2-complet.py b/modules/studentact/student_activities_v2-complet.py new file mode 100644 index 0000000000000000000000000000000000000000..638797e45d311fa223873be6058fb6093a4fbcc8 --- /dev/null +++ b/modules/studentact/student_activities_v2-complet.py @@ -0,0 +1,794 @@ +############## +###modules/studentact/student_activities_v2.py + +import streamlit as st +import re +import io +from io import BytesIO +import pandas as pd +import numpy as np +import time +import matplotlib.pyplot as plt +from datetime import datetime +from spacy import displacy +import random +import base64 +import seaborn as sns +import logging + +# Importaciones de la base de datos +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis +from ..database.semantic_mongo_db import get_student_semantic_analysis +from ..database.discourse_mongo_db import get_student_discourse_analysis +from ..database.chat_mongo_db import get_chat_history + +logger = logging.getLogger(__name__) + +################################################################################### + +def display_student_activities(username: str, lang_code: str, t: dict): + """ + Muestra todas las actividades del estudiante + Args: + username: Nombre del estudiante + lang_code: Código del idioma + t: Diccionario de traducciones + """ + try: + st.header(t.get('activities_title', 'Mis Actividades')) + + # Tabs para diferentes tipos de análisis + tabs = st.tabs([ + t.get('morpho_activities', 'Análisis Morfosintáctico'), + t.get('semantic_activities', 'Análisis Semántico'), + t.get('discourse_activities', 'Análisis del Discurso'), + t.get('chat_activities', 'Conversaciones con el Asistente') + ]) + + # Tab de Análisis Morfosintáctico + with tabs[0]: + display_morphosyntax_activities(username, t) + + # Tab de Análisis Semántico + with tabs[1]: + display_semantic_activities(username, t) + + # Tab de Análisis del Discurso + with tabs[2]: + display_discourse_activities(username, t) + + # Tab de Conversaciones del Chat + with tabs[3]: + display_chat_activities(username, t) + + except Exception as e: + logger.error(f"Error mostrando actividades: {str(e)}") + st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) + + +############################################################################################### +def display_morphosyntax_activities(username: str, t: dict): + """Muestra actividades de análisis morfosintáctico""" + try: + analyses = get_student_morphosyntax_analysis(username) + if not analyses: + st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") + st.write(analysis['text']) + + if 'arc_diagrams' in analysis: + st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) + for diagram in analysis['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) + + +############################################################################################### +def display_semantic_activities(username: str, t: dict): + """Muestra actividades de análisis semántico""" + try: + logger.info(f"Recuperando análisis semántico para {username}") + analyses = get_student_semantic_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis semánticos") + st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis semánticos") + for analysis in analyses: + try: + # Verificar campos mínimos necesarios + if not all(key in analysis for key in ['timestamp', 'concept_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + if analysis['concept_graph']: + logger.debug("Decodificando gráfico de conceptos") + try: + image_bytes = base64.b64decode(analysis['concept_graph']) + st.image(image_bytes, use_column_width=True) + logger.debug("Gráfico mostrado exitosamente") + except Exception as img_error: + logger.error(f"Error decodificando imagen: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_graph', 'No hay visualización disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis semántico: {str(e)}") + st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) + + +################################################################################################### +def display_discourse_activities(username: str, t: dict): + """Muestra actividades de análisis del discurso""" + try: + logger.info(f"Recuperando análisis del discurso para {username}") + analyses = get_student_discourse_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis del discurso") + st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis del discurso") + for analysis in analyses: + try: + # Verificar campos mínimos necesarios + if not all(key in analysis for key in ['timestamp', 'combined_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + if analysis['combined_graph']: + logger.debug("Decodificando gráfico combinado") + try: + image_bytes = base64.b64decode(analysis['combined_graph']) + st.image(image_bytes, use_column_width=True) + logger.debug("Gráfico mostrado exitosamente") + except Exception as img_error: + logger.error(f"Error decodificando imagen: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_visualization', 'No hay visualización comparativa disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis del discurso: {str(e)}") + st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) + +################################################################################# +def display_discourse_comparison(analysis: dict, t: dict): + """Muestra la comparación de análisis del discurso""" + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame(analysis['key_concepts1']) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame(analysis['key_concepts2']) + st.dataframe(df2) + +################################################################################# +def display_chat_activities(username: str, t: dict): + """ + Muestra historial de conversaciones del chat + """ + try: + # Obtener historial del chat + chat_history = get_chat_history( + username=username, + analysis_type='sidebar', + limit=50 + ) + + if not chat_history: + st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) + return + + for chat in reversed(chat_history): # Mostrar las más recientes primero + try: + # Convertir timestamp a datetime para formato + timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander( + f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", + expanded=False + ): + if 'messages' in chat and chat['messages']: + # Mostrar cada mensaje en la conversación + for message in chat['messages']: + role = message.get('role', 'unknown') + content = message.get('content', '') + + # Usar el componente de chat de Streamlit + with st.chat_message(role): + st.markdown(content) + + # Agregar separador entre mensajes + st.divider() + else: + st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) + + except Exception as e: + logger.error(f"Error mostrando conversación: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando historial del chat: {str(e)}") + st.error(t.get('error_chat', 'Error al mostrar historial del chat')) + + + + + + + + + +''' +##########versión 25-9-2024---02:30 ################ OK (username)#################### + +def display_student_progress(username, lang_code, t, student_data): + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + if not student_data or len(student_data.get('entries', [])) == 0: + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True): + total_entries = len(student_data['entries']) + st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados")) + ax.set_xlabel(t.get("analysis_type", "Tipo de análisis")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + + # Mostrar los últimos análisis morfosintácticos + with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for entry in morphosyntax_entries[:5]: # Mostrar los últimos 5 + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + if 'arc_diagrams' in entry and entry['arc_diagrams']: + st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True) + + # Añadir secciones similares para análisis semánticos y discursivos si es necesario + + # Mostrar el historial de chat + with st.expander(t.get("chat_history", "Historial de Chat")): + if 'chat_history' in student_data: + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + else: + st.write(t.get("no_chat_history", "No hay historial de chat disponible.")) + + +##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)#################### + +def display_student_progress(username, lang_code, t, student_data): + if not student_data or len(student_data['entries']) == 0: + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True): + total_entries = len(student_data['entries']) + st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + + fig, ax = plt.subplots(figsize=(8, 4)) + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados")) + ax.set_xlabel(t.get("analysis_type", "Tipo de análisis")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + + # Histórico de Análisis Morfosintácticos + with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + if not morphosyntax_entries: + st.warning("No se encontraron análisis morfosintácticos.") + for entry in morphosyntax_entries: + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + if 'arc_diagrams' in entry and entry['arc_diagrams']: + try: + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + except Exception as e: + logger.error(f"Error al mostrar diagrama de arco: {str(e)}") + st.error("Error al mostrar el diagrama de arco.") + else: + st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis.")) + + # Histórico de Análisis Semánticos + with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")): + semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + if not semantic_entries: + st.warning("No se encontraron análisis semánticos.") + for entry in semantic_entries: + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + if 'key_concepts' in entry: + st.write(t.get("key_concepts", "Conceptos clave:")) + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales")) + except Exception as e: + logger.error(f"Error al mostrar gráfico semántico: {str(e)}") + st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}")) + + # Histórico de Análisis Discursivos + with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + for i in [1, 2]: + if f'key_concepts{i}' in entry: + st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:") + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']]) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado")) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1")) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2")) + except Exception as e: + st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}")) + + # Histórico de Conversaciones con el ChatBot + with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")): + if 'chat_history' in student_data and student_data['chat_history']: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write(f"{t.get('user', 'Usuario')}: {message['content']}") + else: + st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}") + st.write("---") + else: + st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot.")) + + # Añadir logs para depuración + if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")): + st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):")) + st.json(student_data) + + # Mostrar conteo de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + type_counts = {t: analysis_types.count(t) for t in set(analysis_types)} + st.write("Conteo de tipos de análisis:") + st.write(type_counts) + + +#############################--- Update 16:00 24-9 ######################################### +def display_student_progress(username, lang_code, t, student_data): + try: + st.subheader(t.get('student_activities', 'Student Activitie')) + + if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t.get('no_data_warning', 'No analysis data found for this student.')) + return + + # Resumen de actividades + total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])), + t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])), + t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', [])) + } + # Configurar el estilo de seaborn para un aspecto más atractivo + sns.set_style("whitegrid") + + # Crear una figura más pequeña + fig, ax = plt.subplots(figsize=(6, 4)) + + # Usar colores más atractivos + colors = ['#ff9999', '#66b3ff', '#99ff99'] + + # Crear el gráfico de barras + bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors) + + # Añadir etiquetas de valor encima de cada barra + for bar in bars: + height = bar.get_height() + ax.text(bar.get_x() + bar.get_width()/2., height, + f'{height}', + ha='center', va='bottom') + + # Configurar el título y las etiquetas + ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12) + ax.set_ylabel(t.get('count', 'Count'), fontsize=10) + + # Rotar las etiquetas del eje x para mejor legibilidad + plt.xticks(rotation=45, ha='right') + + # Ajustar el diseño para que todo quepa + plt.tight_layout() + + # Mostrar el gráfico en Streamlit + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')): + for analysis in student_data.get(analysis_type, [])[:5]: # Mostrar los últimos 5 + st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t.get('key_concepts', 'Key concepts')) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t.get('chat_history_expander', 'Chat History')): + for chat in student_data.get('chat_history', [])[:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}") + for message in chat.get('messages', []): + st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}") + st.write("---") + + except Exception as e: + logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True) + st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.')) + + + + + + + + + + + + + + + + + + + + + + + + + + + +##################################################################### +def display_student_progress(username, lang_code, t, student_data): + st.subheader(t['student_progress']) + + if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t['no_data_warning']) + return + + # Resumen de actividades + total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t['total_analyses']}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t['morpho_analyses']: len(student_data['morphosyntax_analyses']), + t['semantic_analyses']: len(student_data['semantic_analyses']), + t['discourse_analyses']: len(student_data['discourse_analyses']) + } + fig, ax = plt.subplots() + ax.bar(analysis_counts.keys(), analysis_counts.values()) + ax.set_title(t['analysis_types_chart']) + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t[f'{analysis_type}_expander']): + for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5 + st.subheader(f"{t['analysis_from']} {analysis['timestamp']}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t['key_concepts']) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t['key_concepts']} {t['document']} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t['chat_history_expander']): + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t['chat_from']} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + + + +def display_student_progress(username, lang_code, t, student_data): + st.subheader(t['student_activities']) + + if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t['no_data_warning']) + return + + # Resumen de actividades + total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t['total_analyses']}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t['morphological_analysis']: len(student_data['morphosyntax_analyses']), + t['semantic_analyses']: len(student_data['semantic_analyses']), + t['discourse_analyses']: len(student_data['discourse_analyses']) + } + fig, ax = plt.subplots() + ax.bar(analysis_counts.keys(), analysis_counts.values()) + ax.set_title(t['analysis_types_chart']) + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t[f'{analysis_type}_expander']): + for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5 + st.subheader(f"{t['analysis_from']} {analysis['timestamp']}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t['key_concepts']) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t['key_concepts']} {t['document']} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t['chat_history_expander']): + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t['chat_from']} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + + + + +def display_student_progress(username, lang_code, t, student_data): + st.subheader(t['student_activities']) + + if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t['no_data_warning']) + return + + # Resumen de actividades + total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t['total_analyses']}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t['morphological_analysis']: len(student_data['morphosyntax_analyses']), + t['semantic_analyses']: len(student_data['semantic_analyses']), + t['discourse_analyses']: len(student_data['discourse_analyses']) + } + fig, ax = plt.subplots() + ax.bar(analysis_counts.keys(), analysis_counts.values()) + ax.set_title(t['analysis_types_chart']) + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t[f'{analysis_type}_expander']): + for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5 + st.subheader(f"{t['analysis_from']} {analysis['timestamp']}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t['key_concepts']) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t['key_concepts']} {t['document']} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t['chat_history_expander']): + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t['chat_from']} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + + + + +def display_student_progress(username, lang_code, t): + st.subheader(t['student_activities']) + st.write(f"{t['activities_message']} {username}") + + # Aquí puedes agregar más contenido estático o placeholder + st.info(t['activities_placeholder']) + + # Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders + col1, col2, col3 = st.columns(3) + col1.metric(t['morpho_analyses'], "5") # Ejemplo de dato + col2.metric(t['semantic_analyses'], "3") # Ejemplo de dato + col3.metric(t['discourse_analyses'], "2") # Ejemplo de dato + + + +def display_student_progress(username, lang_code, t): + st.title(f"Actividades de {username}") + + # Obtener todos los datos del estudiante + student_data = get_student_data(username) + + if not student_data or len(student_data.get('entries', [])) == 0: + st.warning("No se encontraron datos de análisis para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + # Resumen de actividades + with st.expander("Resumen de Actividades", expanded=True): + total_entries = len(student_data['entries']) + st.write(f"Total de análisis realizados: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title("Tipos de análisis realizados") + ax.set_xlabel("Tipo de análisis") + ax.set_ylabel("Cantidad") + st.pyplot(fig) + + # Histórico de Análisis Morfosintácticos + with st.expander("Histórico de Análisis Morfosintácticos"): + morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for analysis in morpho_analyses[:5]: # Mostrar los últimos 5 + st.subheader(f"Análisis del {analysis['timestamp']}") + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + + # Histórico de Análisis Semánticos + with st.expander("Histórico de Análisis Semánticos"): + semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + for analysis in semantic_analyses[:5]: # Mostrar los últimos 5 + st.subheader(f"Análisis del {analysis['timestamp']}") + if 'key_concepts' in analysis: + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']]) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + if 'graph' in analysis: + try: + img_bytes = base64.b64decode(analysis['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + + # Histórico de Análisis Discursivos + with st.expander("Histórico de Análisis Discursivos"): + discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for analysis in discourse_analyses[:5]: # Mostrar los últimos 5 + st.subheader(f"Análisis del {analysis['timestamp']}") + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']]) + st.write(f"Conceptos clave del documento {i}:") + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + if 'combined_graph' in analysis: + try: + img_bytes = base64.b64decode(analysis['combined_graph']) + st.image(img_bytes) + except Exception as e: + st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}") + + # Histórico de Conversaciones con el ChatBot + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history'][:5]): # Mostrar las últimas 5 conversaciones + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Opción para mostrar datos de depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +''' \ No newline at end of file diff --git a/modules/studentact/student_activities_v2-error.py b/modules/studentact/student_activities_v2-error.py new file mode 100644 index 0000000000000000000000000000000000000000..864574edcf68c27f3fd935eda8799efa8308d28e --- /dev/null +++ b/modules/studentact/student_activities_v2-error.py @@ -0,0 +1,251 @@ +############## +###modules/studentact/student_activities_v2.py + +import streamlit as st +import re +import io +from io import BytesIO +import pandas as pd +import numpy as np +import time +import matplotlib.pyplot as plt +from datetime import datetime +from spacy import displacy +import random +import base64 +import seaborn as sns +import logging + +# Importaciones de la base de datos +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis +from ..database.semantic_mongo_db import get_student_semantic_analysis +from ..database.discourse_mongo_db import get_student_discourse_analysis +from ..database.chat_mongo_db import get_chat_history + +logger = logging.getLogger(__name__) + +################################################################################### +def display_student_activities(username: str, lang_code: str, t: dict): + """ + Muestra todas las actividades del estudiante + Args: + username: Nombre del estudiante + lang_code: Código del idioma + t: Diccionario de traducciones + """ + try: + st.header(t.get('activities_title', 'Mis Actividades')) + + # Tabs para diferentes tipos de análisis + tabs = st.tabs([ + t.get('morpho_activities', 'Análisis Morfosintáctico'), + t.get('semantic_activities', 'Análisis Semántico'), + t.get('discourse_activities', 'Análisis del Discurso'), + t.get('chat_activities', 'Conversaciones con el Asistente') + ]) + + # Tab de Análisis Morfosintáctico + with tabs[0]: + display_morphosyntax_activities(username, t) + + # Tab de Análisis Semántico + with tabs[1]: + display_semantic_activities(username, t) + + # Tab de Análisis del Discurso + with tabs[2]: + display_discourse_activities(username, t) + + # Tab de Conversaciones del Chat + with tabs[3]: + display_chat_activities(username, t) + + except Exception as e: + logger.error(f"Error mostrando actividades: {str(e)}") + st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) + +################################################################################### +def display_morphosyntax_activities(username: str, t: dict): + """Muestra actividades de análisis morfosintáctico""" + try: + analyses = get_student_morphosyntax_analysis(username) + if not analyses: + st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") + st.write(analysis['text']) + + if 'arc_diagrams' in analysis: + st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) + for diagram in analysis['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) + +################################################################################### +def display_semantic_activities(username: str, t: dict): + """Muestra actividades de análisis semántico""" + try: + analyses = get_student_semantic_analysis(username) + if not analyses: + st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + + # Mostrar conceptos clave + if 'key_concepts' in analysis: + st.subheader(t.get('key_concepts', 'Conceptos clave')) + df = pd.DataFrame( + analysis['key_concepts'], + columns=['Concepto', 'Frecuencia'] + ) + st.dataframe(df) + + # Mostrar gráfico de conceptos + if 'concept_graph' in analysis and analysis['concept_graph']: + st.subheader(t.get('concept_graph', 'Grafo de conceptos')) + image_bytes = base64.b64decode(analysis['concept_graph']) + st.image(image_bytes) + + except Exception as e: + logger.error(f"Error mostrando análisis semántico: {str(e)}") + st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) + +################################################################################### + +def display_discourse_activities(username: str, t: dict): + """Muestra actividades de análisis del discurso""" + try: + analyses = get_student_discourse_analysis(username) + if not analyses: + st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + + # Mostrar conceptos clave + if 'key_concepts1' in analysis and 'key_concepts2' in analysis: + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame( + analysis['key_concepts1'], + columns=['Concepto', 'Frecuencia'] + ) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame( + analysis['key_concepts2'], + columns=['Concepto', 'Frecuencia'] + ) + st.dataframe(df2) + + # Mostrar gráficos + if all(key in analysis for key in ['graph1', 'graph2']): + st.subheader(t.get('visualizations', 'Visualizaciones')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('graph_text_1', 'Grafo Texto 1')}**") + if analysis['graph1']: + image_bytes = base64.b64decode(analysis['graph1']) + st.image(image_bytes) + + with col2: + st.markdown(f"**{t.get('graph_text_2', 'Grafo Texto 2')}**") + if analysis['graph2']: + image_bytes = base64.b64decode(analysis['graph2']) + st.image(image_bytes) + + except Exception as e: + logger.error(f"Error mostrando análisis del discurso: {str(e)}") + st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) +################################################################################# + +def display_discourse_comparison(analysis: dict, t: dict): + """Muestra la comparación de análisis del discurso""" + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame(analysis['key_concepts1']) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame(analysis['key_concepts2']) + st.dataframe(df2) + +################################################################################# + + +def display_chat_activities(username: str, t: dict): + """ + Muestra historial de conversaciones del chat + """ + try: + # Obtener historial del chat + chat_history = get_chat_history( + username=username, + analysis_type='sidebar', + limit=50 + ) + + if not chat_history: + st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) + return + + for chat in reversed(chat_history): # Mostrar las más recientes primero + try: + # Convertir timestamp a datetime para formato + timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander( + f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", + expanded=False + ): + if 'messages' in chat and chat['messages']: + # Mostrar cada mensaje en la conversación + for message in chat['messages']: + role = message.get('role', 'unknown') + content = message.get('content', '') + + # Usar el componente de chat de Streamlit + with st.chat_message(role): + st.markdown(content) + + # Agregar separador entre mensajes + st.divider() + else: + st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) + + except Exception as e: + logger.error(f"Error mostrando conversación: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando historial del chat: {str(e)}") + st.error(t.get('error_chat', 'Error al mostrar historial del chat')) \ No newline at end of file diff --git a/modules/studentact/student_activities_v2.py b/modules/studentact/student_activities_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..c77c5e5044e6e7dab3bb1fdc11d08eca15a1b0fc --- /dev/null +++ b/modules/studentact/student_activities_v2.py @@ -0,0 +1,571 @@ + ############## +###modules/studentact/student_activities_v2.py + +import streamlit as st +import re +import io +from io import BytesIO +import pandas as pd +import numpy as np +import time +import matplotlib.pyplot as plt +from datetime import datetime, timedelta +from spacy import displacy +import random +import base64 +import seaborn as sns +import logging + +# Importaciones de la base de datos +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis +from ..database.semantic_mongo_db import get_student_semantic_analysis +from ..database.discourse_mongo_db import get_student_discourse_analysis +from ..database.chat_mongo_db import get_chat_history +from ..database.current_situation_mongo_db import get_current_situation_analysis +from ..database.claude_recommendations_mongo_db import get_claude_recommendations + +# Importar la función generate_unique_key +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +################################################################################### + +def display_student_activities(username: str, lang_code: str, t: dict): + """ + Muestra todas las actividades del estudiante + Args: + username: Nombre del estudiante + lang_code: Código del idioma + t: Diccionario de traducciones + """ + try: + st.header(t.get('activities_title', 'Mis Actividades')) + + # Tabs para diferentes tipos de análisis + tabs = st.tabs([ + t.get('current_situation_activities', 'Mi Situación Actual'), + t.get('morpho_activities', 'Análisis Morfosintáctico'), + t.get('semantic_activities', 'Análisis Semántico'), + t.get('discourse_activities', 'Análisis del Discurso'), + t.get('chat_activities', 'Conversaciones con el Asistente') + ]) + + # Tab de Situación Actual + with tabs[0]: + display_current_situation_activities(username, t) + + # Tab de Análisis Morfosintáctico + with tabs[1]: + display_morphosyntax_activities(username, t) + + # Tab de Análisis Semántico + with tabs[2]: + display_semantic_activities(username, t) + + # Tab de Análisis del Discurso + with tabs[3]: + display_discourse_activities(username, t) + + # Tab de Conversaciones del Chat + with tabs[4]: + display_chat_activities(username, t) + + except Exception as e: + logger.error(f"Error mostrando actividades: {str(e)}") + st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) + + +############################################################################################### + +def display_current_situation_activities(username: str, t: dict): + """ + Muestra análisis de situación actual junto con las recomendaciones de Claude + unificando la información de ambas colecciones y emparejándolas por cercanía temporal. + """ + try: + # Recuperar datos de ambas colecciones + logger.info(f"Recuperando análisis de situación actual para {username}") + situation_analyses = get_current_situation_analysis(username, limit=10) + + # Verificar si hay datos + if situation_analyses: + logger.info(f"Recuperados {len(situation_analyses)} análisis de situación") + # Depurar para ver la estructura de datos + for i, analysis in enumerate(situation_analyses): + logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}") + if 'metrics' in analysis: + logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}") + else: + logger.warning("No se encontraron análisis de situación actual") + + logger.info(f"Recuperando recomendaciones de Claude para {username}") + claude_recommendations = get_claude_recommendations(username) + + if claude_recommendations: + logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude") + else: + logger.warning("No se encontraron recomendaciones de Claude") + + # Verificar si hay algún tipo de análisis disponible + if not situation_analyses and not claude_recommendations: + logger.info("No se encontraron análisis de situación actual ni recomendaciones") + st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados')) + return + + # Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo + logger.info("Creando emparejamientos temporales de análisis") + + # Convertir timestamps a objetos datetime para comparación + situation_times = [] + for analysis in situation_analyses: + if 'timestamp' in analysis: + try: + timestamp_str = analysis['timestamp'] + dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) + situation_times.append((dt, analysis)) + except Exception as e: + logger.error(f"Error parseando timestamp de situación: {str(e)}") + + recommendation_times = [] + for recommendation in claude_recommendations: + if 'timestamp' in recommendation: + try: + timestamp_str = recommendation['timestamp'] + dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) + recommendation_times.append((dt, recommendation)) + except Exception as e: + logger.error(f"Error parseando timestamp de recomendación: {str(e)}") + + # Ordenar por tiempo + situation_times.sort(key=lambda x: x[0], reverse=True) + recommendation_times.sort(key=lambda x: x[0], reverse=True) + + # Crear pares combinados + combined_items = [] + + # Primero, procesar todas las situaciones encontrando la recomendación más cercana + for sit_time, situation in situation_times: + # Buscar la recomendación más cercana en tiempo + best_match = None + min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos) + best_rec_time = None + + for rec_time, recommendation in recommendation_times: + time_diff = abs(sit_time - rec_time) + if time_diff < min_diff: + min_diff = time_diff + best_match = recommendation + best_rec_time = rec_time + + # Crear un elemento combinado + if best_match: + timestamp_key = sit_time.isoformat() + combined_items.append((timestamp_key, { + 'situation': situation, + 'recommendation': best_match, + 'time_diff': min_diff.total_seconds() + })) + # Eliminar la recomendación usada para no reutilizarla + recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time] + logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})") + else: + # Si no hay recomendación cercana, solo incluir la situación + timestamp_key = sit_time.isoformat() + combined_items.append((timestamp_key, { + 'situation': situation + })) + logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana") + + # Agregar recomendaciones restantes sin situación + for rec_time, recommendation in recommendation_times: + timestamp_key = rec_time.isoformat() + combined_items.append((timestamp_key, { + 'recommendation': recommendation + })) + logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano") + + # Ordenar por tiempo (más reciente primero) + combined_items.sort(key=lambda x: x[0], reverse=True) + + logger.info(f"Procesando {len(combined_items)} elementos combinados") + + # Mostrar cada par combinado + for i, (timestamp_key, analysis_pair) in enumerate(combined_items): + try: + # Obtener datos de situación y recomendación + situation_data = analysis_pair.get('situation', {}) + recommendation_data = analysis_pair.get('recommendation', {}) + time_diff = analysis_pair.get('time_diff') + + # Si no hay ningún dato, continuar al siguiente + if not situation_data and not recommendation_data: + continue + + # Determinar qué texto mostrar (priorizar el de la situación) + text_to_show = situation_data.get('text', recommendation_data.get('text', '')) + text_type = situation_data.get('text_type', recommendation_data.get('text_type', '')) + + # Formatear fecha para mostrar + try: + # Usar timestamp del key que ya es un formato ISO + dt = datetime.fromisoformat(timestamp_key) + formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S") + except Exception as date_error: + logger.error(f"Error formateando fecha: {str(date_error)}") + formatted_date = timestamp_key + + # Determinar el título del expander + title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}" + if text_type: + text_type_display = { + 'academic_article': t.get('academic_article', 'Artículo académico'), + 'student_essay': t.get('student_essay', 'Trabajo universitario'), + 'general_communication': t.get('general_communication', 'Comunicación general') + }.get(text_type, text_type) + title += f" - {text_type_display}" + + # Añadir indicador de emparejamiento si existe + if time_diff is not None: + if time_diff < 60: # menos de un minuto + title += f" 🔄 (emparejados)" + else: + title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)" + + # Usar un ID único para cada expander + expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}" + + # Mostrar el análisis en un expander + with st.expander(title, expanded=False): + # Mostrar texto analizado con key único + st.subheader(t.get('analyzed_text', 'Texto analizado')) + st.text_area( + "Text Content", + value=text_to_show, + height=100, + disabled=True, + label_visibility="collapsed", + key=f"text_area_{expander_id}" + ) + + # Crear tabs para separar diagnóstico y recomendaciones + diagnosis_tab, recommendations_tab = st.tabs([ + t.get('diagnosis_tab', 'Diagnóstico'), + t.get('recommendations_tab', 'Recomendaciones') + ]) + + # Tab de diagnóstico + with diagnosis_tab: + if situation_data and 'metrics' in situation_data: + metrics = situation_data['metrics'] + + # Dividir en dos columnas + col1, col2 = st.columns(2) + + # Principales métricas en formato de tarjetas + with col1: + st.subheader(t.get('key_metrics', 'Métricas clave')) + + # Mostrar cada métrica principal + for metric_name, metric_data in metrics.items(): + try: + # Determinar la puntuación + score = None + if isinstance(metric_data, dict): + # Intentar diferentes nombres de campo + if 'normalized_score' in metric_data: + score = metric_data['normalized_score'] + elif 'score' in metric_data: + score = metric_data['score'] + elif 'value' in metric_data: + score = metric_data['value'] + elif isinstance(metric_data, (int, float)): + score = metric_data + + if score is not None: + # Asegurarse de que score es numérico + if isinstance(score, (int, float)): + # Determinar color y emoji basado en la puntuación + if score < 0.5: + emoji = "🔴" + color = "#ffcccc" # light red + elif score < 0.75: + emoji = "🟡" + color = "#ffffcc" # light yellow + else: + emoji = "🟢" + color = "#ccffcc" # light green + + # Mostrar la métrica con estilo + st.markdown(f""" +
+ {emoji} {metric_name.capitalize()}: {score:.2f} +
+ """, unsafe_allow_html=True) + else: + # Si no es numérico, mostrar como texto + st.markdown(f""" +
+ ℹ️ {metric_name.capitalize()}: {str(score)} +
+ """, unsafe_allow_html=True) + except Exception as e: + logger.error(f"Error procesando métrica {metric_name}: {str(e)}") + + # Mostrar detalles adicionales si están disponibles + with col2: + st.subheader(t.get('details', 'Detalles')) + + # Para cada métrica, mostrar sus detalles si existen + for metric_name, metric_data in metrics.items(): + try: + if isinstance(metric_data, dict): + # Mostrar detalles directamente o buscar en subcampos + details = None + if 'details' in metric_data and metric_data['details']: + details = metric_data['details'] + else: + # Crear un diccionario con los detalles excluyendo 'normalized_score' y similares + details = {k: v for k, v in metric_data.items() + if k not in ['normalized_score', 'score', 'value']} + + if details: + st.write(f"**{metric_name.capitalize()}**") + st.json(details, expanded=False) + except Exception as e: + logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}") + else: + st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles')) + + # Tab de recomendaciones + with recommendations_tab: + if recommendation_data and 'recommendations' in recommendation_data: + st.markdown(f""" +
+ {recommendation_data['recommendations']} +
+ """, unsafe_allow_html=True) + elif recommendation_data and 'feedback' in recommendation_data: + st.markdown(f""" +
+ {recommendation_data['feedback']} +
+ """, unsafe_allow_html=True) + else: + st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles')) + + except Exception as e: + logger.error(f"Error procesando par de análisis: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando actividades de situación actual: {str(e)}") + st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual')) + +############################################################################################### + +def display_morphosyntax_activities(username: str, t: dict): + """Muestra actividades de análisis morfosintáctico""" + try: + analyses = get_student_morphosyntax_analysis(username) + if not analyses: + st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") + st.write(analysis['text']) + + if 'arc_diagrams' in analysis: + st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) + for diagram in analysis['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) + + +############################################################################################### + +def display_semantic_activities(username: str, t: dict): + """Muestra actividades de análisis semántico""" + try: + logger.info(f"Recuperando análisis semántico para {username}") + analyses = get_student_semantic_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis semánticos") + st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis semánticos") + + for analysis in analyses: + try: + # Verificar campos necesarios + if not all(key in analysis for key in ['timestamp', 'concept_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + # Crear expander + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + # Procesar y mostrar gráfico + if analysis.get('concept_graph'): + try: + # Convertir de base64 a bytes + logger.debug("Decodificando gráfico de conceptos") + image_data = analysis['concept_graph'] + + # Si el gráfico ya es bytes, usarlo directamente + if isinstance(image_data, bytes): + image_bytes = image_data + else: + # Si es string base64, decodificar + image_bytes = base64.b64decode(image_data) + + logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}") + + # Mostrar imagen + st.image( + image_bytes, + caption=t.get('concept_network', 'Red de Conceptos'), + use_column_width=True + ) + logger.debug("Gráfico mostrado exitosamente") + + except Exception as img_error: + logger.error(f"Error procesando gráfico: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_graph', 'No hay visualización disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis semántico: {str(e)}") + st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) + + +################################################################################################### +def display_discourse_activities(username: str, t: dict): + """Muestra actividades de análisis del discurso""" + try: + logger.info(f"Recuperando análisis del discurso para {username}") + analyses = get_student_discourse_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis del discurso") + st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis del discurso") + for analysis in analyses: + try: + # Verificar campos mínimos necesarios + if not all(key in analysis for key in ['timestamp', 'combined_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + if analysis['combined_graph']: + logger.debug("Decodificando gráfico combinado") + try: + image_bytes = base64.b64decode(analysis['combined_graph']) + st.image(image_bytes, use_column_width=True) + logger.debug("Gráfico mostrado exitosamente") + except Exception as img_error: + logger.error(f"Error decodificando imagen: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_visualization', 'No hay visualización comparativa disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis del discurso: {str(e)}") + st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) + +################################################################################# +def display_chat_activities(username: str, t: dict): + """ + Muestra historial de conversaciones del chat + """ + try: + # Obtener historial del chat + chat_history = get_chat_history( + username=username, + analysis_type='sidebar', + limit=50 + ) + + if not chat_history: + st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) + return + + for chat in reversed(chat_history): # Mostrar las más recientes primero + try: + # Convertir timestamp a datetime para formato + timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander( + f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", + expanded=False + ): + if 'messages' in chat and chat['messages']: + # Mostrar cada mensaje en la conversación + for message in chat['messages']: + role = message.get('role', 'unknown') + content = message.get('content', '') + + # Usar el componente de chat de Streamlit + with st.chat_message(role): + st.markdown(content) + + # Agregar separador entre mensajes + st.divider() + else: + st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) + + except Exception as e: + logger.error(f"Error mostrando conversación: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando historial del chat: {str(e)}") + st.error(t.get('error_chat', 'Error al mostrar historial del chat')) + +################################################################################# +def display_discourse_comparison(analysis: dict, t: dict): + """Muestra la comparación de análisis del discurso""" + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame(analysis['key_concepts1']) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame(analysis['key_concepts2']) + st.dataframe(df2) \ No newline at end of file diff --git a/modules/studentact/temp_current_situation_interface.py b/modules/studentact/temp_current_situation_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..c5c62f53c8f66bfd658f68862f06b5624f34b0bf --- /dev/null +++ b/modules/studentact/temp_current_situation_interface.py @@ -0,0 +1,311 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +from .current_situation_analysis import ( + analyze_text_dimensions, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap +) + +logger = logging.getLogger(__name__) + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz modular para el análisis de la situación actual del estudiante. + Esta función maneja la presentación y la interacción con el usuario. + + Args: + lang_code: Código del idioma actual + nlp_models: Diccionario de modelos de spaCy cargados + t: Diccionario de traducciones + """ + st.markdown("## Mi Situación Actual de Escritura") + + # Container principal para mejor organización visual + with st.container(): + # Columnas para entrada y visualización + text_col, visual_col = st.columns([1,2]) + + with text_col: + # Área de entrada de texto + text_input = st.text_area( + t.get('current_situation_input', "Ingresa tu texto para analizar:"), + height=400, + key=generate_unique_key("current_situation", "input") + ) + + # Botón de análisis + if st.button( + t.get('analyze_button', "Explorar mi escritura"), + type="primary", + disabled=not text_input, + key=generate_unique_key("current_situation", "analyze") + ): + try: + with st.spinner(t.get('processing', "Analizando texto...")): + # 1. Procesar el texto + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # 2. Mostrar visualizaciones en la columna derecha + with visual_col: + display_current_situation_visual(doc, metrics) + + # 3. Obtener retroalimentación de Claude + feedback = get_claude_feedback(metrics, text_input) + + # 4. Guardar los resultados + from ..database.current_situation_mongo_db import store_current_situation_result + + if st.button(t.get('analyze_button', "Explorar mi escritura")): + with st.spinner(t.get('processing', "Analizando texto...")): + # Procesar y analizar + doc = nlp_models[lang_code](text_input) + + # Obtener métricas con manejo de errores + try: + metrics = analyze_text_dimensions(doc) + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error("Error en el análisis de dimensiones") + return + + # Obtener feedback + try: + feedback = get_claude_feedback(metrics, text_input) + except Exception as e: + logger.error(f"Error obteniendo feedback: {str(e)}") + st.error("Error obteniendo retroalimentación") + return + + # Guardar resultados con verificación + if store_current_situation_result( + st.session_state.username, + text_input, + metrics, + feedback + ): + st.success(t.get('save_success', "Análisis guardado")) + + # Mostrar visualizaciones y recomendaciones + display_current_situation_visual(doc, metrics) + show_recommendations(feedback, t) + else: + st.error("Error al guardar el análisis") + + except Exception as e: + logger.error(f"Error en interfaz: {str(e)}") + st.error("Error general en la interfaz") + +################################################################ +def display_current_situation_visual(doc, metrics): + """Visualización mejorada de resultados con interpretaciones""" + try: + with st.container(): + # Estilos CSS mejorados para los contenedores + st.markdown(""" + + """, unsafe_allow_html=True) + + # 1. Riqueza de Vocabulario + with st.expander("📚 Riqueza de Vocabulario", expanded=True): + st.markdown('
', unsafe_allow_html=True) + vocabulary_graph = create_vocabulary_network(doc) + if vocabulary_graph: + # Mostrar gráfico + st.pyplot(vocabulary_graph) + plt.close(vocabulary_graph) + + # Interpretación + st.markdown('
', unsafe_allow_html=True) + st.markdown("**¿Qué significa este gráfico?**") + st.markdown(""" + - 🔵 Los nodos azules representan palabras clave en tu texto + - 📏 El tamaño de cada nodo indica su frecuencia de uso + - 🔗 Las líneas conectan palabras que aparecen juntas frecuentemente + - 🎨 Los colores más intensos indican palabras más centrales + """) + st.markdown("
", unsafe_allow_html=True) + st.markdown("
", unsafe_allow_html=True) + + # 2. Estructura de Oraciones + with st.expander("🏗️ Complejidad Estructural", expanded=True): + st.markdown('
', unsafe_allow_html=True) + syntax_graph = create_syntax_complexity_graph(doc) + if syntax_graph: + st.pyplot(syntax_graph) + plt.close(syntax_graph) + + st.markdown('
', unsafe_allow_html=True) + st.markdown("**Análisis de la estructura:**") + st.markdown(""" + - 📊 Las barras muestran la complejidad de cada oración + - 📈 Mayor altura indica estructuras más elaboradas + - 🎯 La línea punteada indica el nivel óptimo de complejidad + - 🔄 Variación en las alturas sugiere dinamismo en la escritura + """) + st.markdown("
", unsafe_allow_html=True) + st.markdown("
", unsafe_allow_html=True) + + # 3. Cohesión Textual + with st.expander("🔄 Cohesión del Texto", expanded=True): + st.markdown('
', unsafe_allow_html=True) + cohesion_map = create_cohesion_heatmap(doc) + if cohesion_map: + st.pyplot(cohesion_map) + plt.close(cohesion_map) + + st.markdown('
', unsafe_allow_html=True) + st.markdown("**¿Cómo leer el mapa de calor?**") + st.markdown(""" + - 🌈 Colores más intensos indican mayor conexión entre oraciones + - 📝 La diagonal muestra la coherencia interna de cada oración + - 🔗 Las zonas claras sugieren oportunidades de mejorar conexiones + - 🎯 Un buen texto muestra patrones de color consistentes + """) + st.markdown("
", unsafe_allow_html=True) + st.markdown("
", unsafe_allow_html=True) + + # 4. Métricas Generales + with st.expander("📊 Resumen de Métricas", expanded=True): + col1, col2, col3 = st.columns(3) + + with col1: + st.metric( + "Diversidad Léxica", + f"{metrics['vocabulary_richness']:.2f}/1.0", + help="Mide la variedad de palabras diferentes utilizadas" + ) + + with col2: + st.metric( + "Complejidad Estructural", + f"{metrics['structural_complexity']:.2f}/1.0", + help="Indica qué tan elaboradas son las estructuras de las oraciones" + ) + + with col3: + st.metric( + "Cohesión Textual", + f"{metrics['cohesion_score']:.2f}/1.0", + help="Evalúa qué tan bien conectadas están las ideas entre sí" + ) + + except Exception as e: + logger.error(f"Error en visualización: {str(e)}") + st.error("Error al generar las visualizaciones") + +################################################################ +def show_recommendations(feedback, t): + """ + Muestra las recomendaciones y ejercicios personalizados para el estudiante, + permitiendo el seguimiento de su progreso. + + Args: + feedback: Diccionario con retroalimentación y ejercicios recomendados + t: Diccionario de traducciones + """ + st.markdown("### " + t.get('recommendations_title', "Recomendaciones para mejorar")) + + for area, exercises in feedback['recommendations'].items(): + with st.expander(f"💡 {area}"): + try: + # Descripción del área de mejora + st.markdown(exercises['description']) + + # Obtener el historial de ejercicios del estudiante + from ..database.current_situation_mongo_db import get_student_exercises_history + exercises_history = get_student_exercises_history(st.session_state.username) + + # Separar ejercicios en completados y pendientes + completed = exercises_history.get(area, []) + + # Mostrar estado actual + progress_col1, progress_col2 = st.columns([3,1]) + with progress_col1: + st.markdown("**Ejercicio sugerido:**") + st.markdown(exercises['activity']) + + with progress_col2: + # Verificar si el ejercicio ya está completado + exercise_key = f"{area}_{exercises['activity']}" + is_completed = exercise_key in completed + + if is_completed: + st.success("✅ Completado") + else: + # Botón para marcar ejercicio como completado + if st.button( + t.get('mark_complete', "Marcar como completado"), + key=generate_unique_key("exercise", area), + type="primary" + ): + try: + from ..database.current_situation_mongo_db import update_exercise_status + + # Actualizar estado del ejercicio + success = update_exercise_status( + username=st.session_state.username, + area=area, + exercise=exercises['activity'], + completed=True + ) + + if success: + st.success(t.get( + 'exercise_completed', + "¡Ejercicio marcado como completado!" + )) + st.rerun() + else: + st.error(t.get( + 'exercise_error', + "Error al actualizar el estado del ejercicio" + )) + except Exception as e: + logger.error(f"Error actualizando estado del ejercicio: {str(e)}") + st.error(t.get('update_error', "Error al actualizar el ejercicio")) + + # Mostrar recursos adicionales si existen + if 'resources' in exercises: + st.markdown("**Recursos adicionales:**") + for resource in exercises['resources']: + st.markdown(f"- {resource}") + + # Mostrar fecha de finalización si está completado + if is_completed: + completion_date = exercises_history[exercise_key].get('completion_date') + if completion_date: + st.caption( + t.get('completed_on', "Completado el") + + f": {completion_date.strftime('%d/%m/%Y %H:%M')}" + ) + + except Exception as e: + logger.error(f"Error mostrando recomendaciones para {area}: {str(e)}") + st.error(t.get( + 'recommendations_error', + f"Error al mostrar las recomendaciones para {area}" + )) \ No newline at end of file diff --git a/modules/text_analysis/__init__.py b/modules/text_analysis/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a8781ff2d1a28dde08cad6688e7efb909aeabaa9 --- /dev/null +++ b/modules/text_analysis/__init__.py @@ -0,0 +1,29 @@ +# modules/text_analysis/__init__.py +import logging + +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' +) + +# Importaciones de morpho_analysis +from .morpho_analysis import ( + perform_advanced_morphosyntactic_analysis, + get_repeated_words_colors, + highlight_repeated_words, + generate_arc_diagram, + get_detailed_pos_analysis, + get_morphological_analysis, + get_sentence_structure_analysis, + POS_COLORS, + POS_TRANSLATIONS +) + +# Importaciones de semantic_analysis +from .semantic_analysis import ( + create_concept_graph, + visualize_concept_graph, + identify_key_concepts +) + + diff --git a/modules/text_analysis/__pycache__/__init__.cpython-311.pyc b/modules/text_analysis/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e7768ec60cb4a06cdaec79228f7036c906df7b0 Binary files /dev/null and b/modules/text_analysis/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc b/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f526ab04a41ca07b198c4e4aaf1337b595c5f33 Binary files /dev/null and b/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc differ diff --git a/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc b/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d74855a63b98e328d11eb2b08352b26f31a23655 Binary files /dev/null and b/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc differ diff --git a/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc b/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53c63e092b99349668b992be27100905c36bb707 Binary files /dev/null and b/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc differ diff --git a/modules/text_analysis/coherence_analysis.py b/modules/text_analysis/coherence_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..d3f5a12faa99758192ecc4ed3fc22c9249232e86 --- /dev/null +++ b/modules/text_analysis/coherence_analysis.py @@ -0,0 +1 @@ + diff --git a/modules/text_analysis/complex_structures.py b/modules/text_analysis/complex_structures.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/discourse_analysis.py b/modules/text_analysis/discourse_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..7dfc39a92923c3d2ec51dc1e65ad0593cc02d5db --- /dev/null +++ b/modules/text_analysis/discourse_analysis.py @@ -0,0 +1,271 @@ +# modules/text_analysis/discourse_analysis.py +# Configuración de matplotlib + +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +import pandas as pd +import numpy as np +import logging + +logger = logging.getLogger(__name__) + +from .semantic_analysis import ( + create_concept_graph, + visualize_concept_graph, + identify_key_concepts +) + +from .stopwords import ( + get_custom_stopwords, + process_text, + get_stopwords_for_spacy +) + +##################### +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + + +################# +def compare_semantic_analysis(text1, text2, nlp, lang): + """ + Realiza el análisis semántico comparativo entre dos textos + """ + try: + logger.info(f"Iniciando análisis comparativo para idioma: {lang}") + + # Obtener stopwords + stopwords = get_custom_stopwords(lang) + logger.info(f"Obtenidas {len(stopwords)} stopwords para el idioma {lang}") + + # Procesar los textos + doc1 = nlp(text1) + doc2 = nlp(text2) + + # Identificar conceptos clave + logger.info("Identificando conceptos clave del primer texto...") + key_concepts1 = identify_key_concepts(doc1, stopwords=stopwords, min_freq=2, min_length=3) + + logger.info("Identificando conceptos clave del segundo texto...") + key_concepts2 = identify_key_concepts(doc2, stopwords=stopwords, min_freq=2, min_length=3) + + if not key_concepts1 or not key_concepts2: + raise ValueError("No se pudieron identificar conceptos clave en uno o ambos textos") + + # Crear grafos + logger.info("Creando grafos de conceptos...") + G1 = create_concept_graph(doc1, key_concepts1) + G2 = create_concept_graph(doc2, key_concepts2) + + # Visualizar grafos + logger.info("Visualizando grafos...") + + # Primer grafo + plt.figure(figsize=(12, 8)) + fig1 = visualize_concept_graph(G1, lang) + plt.title("Análisis del primer texto", pad=20) + plt.tight_layout() + + # Segundo grafo + plt.figure(figsize=(12, 8)) + fig2 = visualize_concept_graph(G2, lang) + plt.title("Análisis del segundo texto", pad=20) + plt.tight_layout() + + logger.info("Análisis comparativo completado exitosamente") + return fig1, fig2, key_concepts1, key_concepts2 + + except Exception as e: + logger.error(f"Error en compare_semantic_analysis: {str(e)}") + plt.close('all') # Limpiar recursos en caso de error + raise + finally: + plt.close('all') # Asegurar limpieza en todos los casos + + +############################################ +def create_concept_table(key_concepts): + """ + Crea una tabla de conceptos clave con sus frecuencias + Args: + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + pandas.DataFrame: Tabla formateada de conceptos + """ + try: + if not key_concepts: + logger.warning("Lista de conceptos vacía") + return pd.DataFrame(columns=['Concepto', 'Frecuencia']) + + df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia']) + df['Frecuencia'] = df['Frecuencia'].round(2) + return df + except Exception as e: + logger.error(f"Error en create_concept_table: {str(e)}") + return pd.DataFrame(columns=['Concepto', 'Frecuencia']) + + +########################################################## +def perform_discourse_analysis(text1, text2, nlp, lang): + """ + Realiza el análisis completo del discurso + """ + try: + logger.info("Iniciando análisis del discurso...") + + # Verificar inputs + if not text1 or not text2: + raise ValueError("Los textos de entrada no pueden estar vacíos") + + if not nlp: + raise ValueError("Modelo de lenguaje no inicializado") + + # Realizar análisis comparativo + try: + fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis( + text1, text2, nlp, lang + ) + except Exception as e: + logger.error(f"Error en el análisis comparativo: {str(e)}") + raise + + # Crear tablas de resultados + try: + table1 = create_concept_table(key_concepts1) + table2 = create_concept_table(key_concepts2) + except Exception as e: + logger.error(f"Error creando tablas de conceptos: {str(e)}") + raise + + result = { + 'graph1': fig1, + 'graph2': fig2, + 'key_concepts1': key_concepts1, + 'key_concepts2': key_concepts2, + 'table1': table1, + 'table2': table2, + 'success': True + } + + logger.info("Análisis del discurso completado exitosamente") + return result + + except Exception as e: + logger.error(f"Error en perform_discourse_analysis: {str(e)}") + return { + 'success': False, + 'error': str(e) + } + finally: + plt.close('all') # Asegurar limpieza en todos los casos + +################################################################# +def create_concept_table(key_concepts): + """ + Crea una tabla de conceptos clave con sus frecuencias + Args: + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + pandas.DataFrame: Tabla formateada de conceptos + """ + try: + df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia']) + df['Frecuencia'] = df['Frecuencia'].round(2) + return df + except Exception as e: + logger.error(f"Error en create_concept_table: {str(e)}") + raise + +################# +def perform_discourse_analysis(text1, text2, nlp, lang): + """ + Realiza el análisis completo del discurso + Args: + text1: Primer texto a analizar + text2: Segundo texto a analizar + nlp: Modelo de spaCy cargado + lang: Código de idioma + Returns: + dict: Resultados del análisis + """ + try: + # Realizar análisis comparativo + fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis( + text1, text2, nlp, lang + ) + + # Crear tablas de resultados + table1 = create_concept_table(key_concepts1) + table2 = create_concept_table(key_concepts2) + + return { + 'graph1': fig1, + 'graph2': fig2, + 'key_concepts1': key_concepts1, + 'key_concepts2': key_concepts2, + 'table1': table1, + 'table2': table2, + 'success': True + } + + except Exception as e: + logger.error(f"Error en perform_discourse_analysis: {str(e)}") + return { + 'success': False, + 'error': str(e) + } \ No newline at end of file diff --git a/modules/text_analysis/entity_analysis.py b/modules/text_analysis/entity_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/idiom_detection.py b/modules/text_analysis/idiom_detection.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/intertextual_analysis.py b/modules/text_analysis/intertextual_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py b/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..7a0823063d965ac2ca3715fc1484046dd8be39a6 --- /dev/null +++ b/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py @@ -0,0 +1,253 @@ +import spacy +from spacy import displacy +from streamlit.components.v1 import html +import base64 + +from collections import Counter +import re +from ..utils.widget_utils import generate_unique_key + +import logging +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', + 'ADP': 'Preposición', + 'ADV': 'Adverbio', + 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', + 'DET': 'Determinante', + 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', + 'NUM': 'Número', + 'PART': 'Partícula', + 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', + 'SCONJ': 'Conjunción Subordinante', + 'SYM': 'Símbolo', + 'VERB': 'Verbo', + 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', + 'ADP': 'Preposition', + 'ADV': 'Adverb', + 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', + 'DET': 'Determiner', + 'INTJ': 'Interjection', + 'NOUN': 'Noun', + 'NUM': 'Number', + 'PART': 'Particle', + 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', + 'SCONJ': 'Subordinating Conjunction', + 'SYM': 'Symbol', + 'VERB': 'Verb', + 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', + 'ADP': 'Préposition', + 'ADV': 'Adverbe', + 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', + 'DET': 'Déterminant', + 'INTJ': 'Interjection', + 'NOUN': 'Nom', + 'NUM': 'Nombre', + 'PART': 'Particule', + 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', + 'SCONJ': 'Conjonction de Subordination', + 'SYM': 'Symbole', + 'VERB': 'Verbe', + 'X': 'Autre', + } +} + +def generate_arc_diagram(doc): + arc_diagrams = [] + for sent in doc.sents: + words = [token.text for token in sent] + # Calculamos el ancho del SVG basado en la longitud de la oración + svg_width = max(100, len(words) * 120) + # Altura fija para cada oración + svg_height = 300 # Controla la altura del SVG + + # Renderizamos el diagrama de dependencias + html = displacy.render(sent, style="dep", options={ + "add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts. + "arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps. + "arrow_width": 2, #This argument is used for adjusting the width of arrow head in px. + "arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px. + "collapse_punct": True, #It attaches punctuation to the tokens. + "collapse_phrases": False, # This argument merges the noun phrases into one token. + "compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space. + "color": "#ffffff", + "bg": "#0d6efd", + "compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_). + "distance": 100, # Aumentamos la distancia entre palabras + "fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_). + "offset_x": 0, # This argument is used for spacing on left side of the SVG in px. + "word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px. + }) + + # Ajustamos el tamaño del SVG y el viewBox + html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html) + html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html) + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + #html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f' 1} + + word_colors = {} + for token in doc: + if token.text.lower() in repeated_words: + word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF') + + return word_colors + +def highlight_repeated_words(doc): + word_colors = get_repeated_words_colors(doc) + highlighted_text = [] + for token in doc: + if token.text.lower() in word_colors: + color = word_colors[token.text.lower()] + highlighted_text.append(f'{token.text}') + else: + highlighted_text.append(token.text) + return ' '.join(highlighted_text) + + +# Exportar todas las funciones y variables necesarias +__all__ = [ + 'get_repeated_words_colors', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'perform_pos_analysis', + 'perform_morphological_analysis', + 'analyze_sentence_structure', + 'perform_advanced_morphosyntactic_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/modules/text_analysis/morpho_analysis.py b/modules/text_analysis/morpho_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..8920b991562e68ff4cdf914afb9ff14c07dca6ae --- /dev/null +++ b/modules/text_analysis/morpho_analysis.py @@ -0,0 +1,256 @@ +##modules/text_analysis/morpho_analysis.py + +import spacy +from collections import Counter +from spacy import displacy +import re +from streamlit.components.v1 import html +import base64 + +from collections import Counter +import re +from ..utils.widget_utils import generate_unique_key + +import logging +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', + 'ADP': 'Preposición', + 'ADV': 'Adverbio', + 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', + 'DET': 'Determinante', + 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', + 'NUM': 'Número', + 'PART': 'Partícula', + 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', + 'SCONJ': 'Conjunción Subordinante', + 'SYM': 'Símbolo', + 'VERB': 'Verbo', + 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', + 'ADP': 'Preposition', + 'ADV': 'Adverb', + 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', + 'DET': 'Determiner', + 'INTJ': 'Interjection', + 'NOUN': 'Noun', + 'NUM': 'Number', + 'PART': 'Particle', + 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', + 'SCONJ': 'Subordinating Conjunction', + 'SYM': 'Symbol', + 'VERB': 'Verb', + 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', + 'ADP': 'Préposition', + 'ADV': 'Adverbe', + 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', + 'DET': 'Déterminant', + 'INTJ': 'Interjection', + 'NOUN': 'Nom', + 'NUM': 'Nombre', + 'PART': 'Particule', + 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', + 'SCONJ': 'Conjonction de Subordination', + 'SYM': 'Symbole', + 'VERB': 'Verbe', + 'X': 'Autre', + } +} + +############################################################################################# +def get_repeated_words_colors(doc): + word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT') + repeated_words = {word: count for word, count in word_counts.items() if count > 1} + + word_colors = {} + for token in doc: + if token.text.lower() in repeated_words: + word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF') + + return word_colors + +###################################################################################################### +def highlight_repeated_words(doc, word_colors): + highlighted_text = [] + for token in doc: + if token.text.lower() in word_colors: + color = word_colors[token.text.lower()] + highlighted_text.append(f'{token.text}') + else: + highlighted_text.append(token.text) + return ' '.join(highlighted_text) + +################################################################################################# + +def generate_arc_diagram(doc): + """ + Genera diagramas de arco para cada oración en el documento usando spacy-streamlit. + + Args: + doc: Documento procesado por spaCy + Returns: + list: Lista de diagramas en formato HTML + """ + arc_diagrams = [] + try: + options = { + "compact": False, + "color": "#ffffff", + "bg": "#0d6efd", + "font": "Arial", + "offset_x": 50, + "distance": 100, + "arrow_spacing": 12, + "arrow_width": 2, + "arrow_stroke": 2, + "word_spacing": 25, + "maxZoom": 2 + } + + for sent in doc.sents: + try: + # Usar el método render de displacy directamente con las opciones + html = displacy.render(sent, style="dep", options=options) + arc_diagrams.append(html) + except Exception as e: + logger.error(f"Error al renderizar oración: {str(e)}") + continue + + return arc_diagrams + except Exception as e: + logger.error(f"Error general en generate_arc_diagram: {str(e)}") + return None + + +################################################################################################# +def get_detailed_pos_analysis(doc): + """ + Realiza un análisis detallado de las categorías gramaticales (POS) en el texto. + """ + pos_counts = Counter(token.pos_ for token in doc) + total_tokens = len(doc) + pos_analysis = [] + for pos, count in pos_counts.items(): + percentage = (count / total_tokens) * 100 + pos_analysis.append({ + 'pos': pos, + 'count': count, + 'percentage': round(percentage, 2), + 'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos + }) + return sorted(pos_analysis, key=lambda x: x['count'], reverse=True) + +################################################################################################# +def get_morphological_analysis(doc): + """ + Realiza un análisis morfológico detallado de las palabras en el texto. + """ + morphology_analysis = [] + for token in doc: + if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']: # Enfocarse en categorías principales + morphology_analysis.append({ + 'text': token.text, + 'lemma': token.lemma_, + 'pos': token.pos_, + 'tag': token.tag_, + 'dep': token.dep_, + 'shape': token.shape_, + 'is_alpha': token.is_alpha, + 'is_stop': token.is_stop, + 'morph': str(token.morph) + }) + return morphology_analysis + +################################################################################################# +def get_sentence_structure_analysis(doc): + """ + Analiza la estructura de las oraciones en el texto. + """ + sentence_analysis = [] + for sent in doc.sents: + sentence_analysis.append({ + 'text': sent.text, + 'root': sent.root.text, + 'root_pos': sent.root.pos_, + 'num_tokens': len(sent), + 'num_words': len([token for token in sent if token.is_alpha]), + 'subjects': [token.text for token in sent if "subj" in token.dep_], + 'objects': [token.text for token in sent if "obj" in token.dep_], + 'verbs': [token.text for token in sent if token.pos_ == "VERB"] + }) + return sentence_analysis + +################################################################################################# +def perform_advanced_morphosyntactic_analysis(text, nlp): + """ + Realiza un análisis morfosintáctico avanzado del texto. + """ + try: + # Verificar el idioma del modelo + model_lang = nlp.lang + logger.info(f"Realizando análisis con modelo de idioma: {model_lang}") + + # Procesar el texto con el modelo específico del idioma + doc = nlp(text) + + # Realizar análisis específico según el idioma + return { + 'doc': doc, + 'pos_analysis': get_detailed_pos_analysis(doc), + 'morphological_analysis': get_morphological_analysis(doc), + 'sentence_structure': get_sentence_structure_analysis(doc), + 'arc_diagrams': generate_arc_diagram(doc), # Quitamos nlp.lang + 'repeated_words': get_repeated_words_colors(doc), + 'highlighted_text': highlight_repeated_words(doc, get_repeated_words_colors(doc)) + } + except Exception as e: + logger.error(f"Error en análisis morfosintáctico: {str(e)}") + return None + +# Al final del archivo morph_analysis.py +__all__ = [ + 'perform_advanced_morphosyntactic_analysis', + 'get_repeated_words_colors', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'get_detailed_pos_analysis', + 'get_morphological_analysis', + 'get_sentence_structure_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] diff --git a/modules/text_analysis/semantic_analysis-16-10-2024.py b/modules/text_analysis/semantic_analysis-16-10-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..e8684fb9e71fc128772b372e944bd38ec02c131d --- /dev/null +++ b/modules/text_analysis/semantic_analysis-16-10-2024.py @@ -0,0 +1,446 @@ +# modules/text_analysis/semantic_analysis.py +# [Mantener todas las importaciones y constantes existentes...] + +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +import io +import base64 +from collections import Counter, defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity +import logging + +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +CUSTOM_STOPWORDS = { + 'es': { + # Artículos + 'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas', + # Preposiciones comunes + 'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en', + 'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin', + 'sobre', 'tras', 'durante', 'mediante', + # Conjunciones + 'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque', + # Pronombres + 'yo', 'tú', 'él', 'ella', 'nosotros', 'vosotros', 'ellos', + 'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella', + # Verbos auxiliares comunes + 'ser', 'estar', 'haber', 'tener', + # Palabras comunes en textos académicos + 'además', 'también', 'asimismo', 'sin embargo', 'no obstante', + 'por lo tanto', 'entonces', 'así', 'luego', 'pues', + # Números escritos + 'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda', + # Otras palabras comunes + 'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra', + 'donde', 'cuando', 'como', 'que', 'cual', 'quien', + 'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no', + # Símbolos y caracteres especiales + '#', '@', '/', '*', '+', '-', '=', '$', '%' + }, + 'en': { + # Articles + 'the', 'a', 'an', + # Common prepositions + 'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against', + 'between', 'into', 'through', 'during', 'before', 'after', + 'above', 'below', 'to', 'from', 'up', 'down', 'of', + # Conjunctions + 'and', 'or', 'but', 'nor', 'so', 'for', 'yet', + # Pronouns + 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this', + 'that', 'these', 'those', 'my', 'your', 'his', 'her', + # Auxiliary verbs + 'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have', + 'has', 'had', 'do', 'does', 'did', + # Common academic words + 'therefore', 'however', 'thus', 'hence', 'moreover', + 'furthermore', 'nevertheless', + # Numbers written + 'one', 'two', 'three', 'first', 'second', 'third', + # Other common words + 'where', 'when', 'how', 'what', 'which', 'who', + 'whom', 'whose', 'there', 'here', 'just', 'only', + # Symbols and special characters + '#', '@', '/', '*', '+', '-', '=', '$', '%' + }, + 'fr': { + # Articles + 'le', 'la', 'les', 'un', 'une', 'des', + # Prepositions + 'à', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec', + 'sans', 'sous', 'entre', 'derrière', 'chez', 'avant', + # Conjunctions + 'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or', + # Pronouns + 'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils', + 'elles', 'ce', 'cette', 'ces', 'celui', 'celle', + # Auxiliary verbs + 'être', 'avoir', 'faire', + # Academic words + 'donc', 'cependant', 'néanmoins', 'ainsi', 'toutefois', + 'pourtant', 'alors', + # Numbers + 'un', 'deux', 'trois', 'premier', 'première', 'second', + # Other common words + 'où', 'quand', 'comment', 'que', 'qui', 'quoi', + 'quel', 'quelle', 'plus', 'moins', + # Symbols + '#', '@', '/', '*', '+', '-', '=', '$', '%' + } +} + +############################################################################################################## +def get_stopwords(lang_code): + """ + Obtiene el conjunto de stopwords para un idioma específico. + Combina las stopwords de spaCy con las personalizadas. + """ + try: + nlp = spacy.load(f'{lang_code}_core_news_sm') + spacy_stopwords = nlp.Defaults.stop_words + custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set()) + return spacy_stopwords.union(custom_stopwords) + except: + return CUSTOM_STOPWORDS.get(lang_code, set()) + + +def perform_semantic_analysis(text, nlp, lang_code): + """ + Realiza el análisis semántico completo del texto. + Args: + text: Texto a analizar + nlp: Modelo de spaCy + lang_code: Código del idioma + Returns: + dict: Resultados del análisis + """ + + logger.info(f"Starting semantic analysis for language: {lang_code}") + try: + doc = nlp(text) + key_concepts = identify_key_concepts(doc) + concept_graph = create_concept_graph(doc, key_concepts) + concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) + entities = extract_entities(doc, lang_code) + entity_graph = create_entity_graph(entities) + entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) + + # Convertir figuras a bytes + concept_graph_bytes = fig_to_bytes(concept_graph_fig) + entity_graph_bytes = fig_to_bytes(entity_graph_fig) + + logger.info("Semantic analysis completed successfully") + return { + 'key_concepts': key_concepts, + 'concept_graph': concept_graph_bytes, + 'entities': entities, + 'entity_graph': entity_graph_bytes + } + except Exception as e: + logger.error(f"Error in perform_semantic_analysis: {str(e)}") + raise + + +def fig_to_bytes(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + return buf.getvalue() + + +def fig_to_html(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' + + + +def identify_key_concepts(doc, min_freq=2, min_length=3): + """ + Identifica conceptos clave en el texto. + Args: + doc: Documento procesado por spaCy + min_freq: Frecuencia mínima para considerar un concepto + min_length: Longitud mínima de palabra para considerar + Returns: + list: Lista de tuplas (concepto, frecuencia) + """ + try: + # Obtener stopwords para el idioma + stopwords = get_stopwords(doc.lang_) + + # Contar frecuencias de palabras + word_freq = Counter() + + for token in doc: + if (token.lemma_.lower() not in stopwords and + len(token.lemma_) >= min_length and + token.is_alpha and + not token.is_punct and + not token.like_num): + + word_freq[token.lemma_.lower()] += 1 + + # Filtrar por frecuencia mínima + concepts = [(word, freq) for word, freq in word_freq.items() + if freq >= min_freq] + + # Ordenar por frecuencia + concepts.sort(key=lambda x: x[1], reverse=True) + + return concepts[:10] # Retornar los 10 conceptos más frecuentes + + except Exception as e: + logger.error(f"Error en identify_key_concepts: {str(e)}") + return [] # Retornar lista vacía en caso de error + + +def create_concept_graph(doc, key_concepts): + """ + Crea un grafo de relaciones entre conceptos. + Args: + doc: Documento procesado por spaCy + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + nx.Graph: Grafo de conceptos + """ + try: + G = nx.Graph() + + # Crear un conjunto de conceptos clave para búsqueda rápida + concept_words = {concept[0].lower() for concept in key_concepts} + + # Añadir nodos al grafo + for concept, freq in key_concepts: + G.add_node(concept.lower(), weight=freq) + + # Analizar cada oración + for sent in doc.sents: + # Obtener conceptos en la oración actual + current_concepts = [] + for token in sent: + if token.lemma_.lower() in concept_words: + current_concepts.append(token.lemma_.lower()) + + # Crear conexiones entre conceptos en la misma oración + for i, concept1 in enumerate(current_concepts): + for concept2 in current_concepts[i+1:]: + if concept1 != concept2: + # Si ya existe la arista, incrementar el peso + if G.has_edge(concept1, concept2): + G[concept1][concept2]['weight'] += 1 + # Si no existe, crear nueva arista con peso 1 + else: + G.add_edge(concept1, concept2, weight=1) + + return G + + except Exception as e: + logger.error(f"Error en create_concept_graph: {str(e)}") + # Retornar un grafo vacío en caso de error + return nx.Graph() + +def visualize_concept_graph(G, lang_code): + """ + Visualiza el grafo de conceptos. + Args: + G: Grafo de networkx + lang_code: Código del idioma + Returns: + matplotlib.figure.Figure: Figura con el grafo visualizado + """ + try: + plt.figure(figsize=(12, 8)) + + # Calcular el layout del grafo + pos = nx.spring_layout(G) + + # Obtener pesos de nodos y aristas + node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()] + edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()] + + # Dibujar el grafo + nx.draw_networkx_nodes(G, pos, + node_size=node_weights, + node_color='lightblue', + alpha=0.6) + + nx.draw_networkx_edges(G, pos, + width=edge_weights, + alpha=0.5, + edge_color='gray') + + nx.draw_networkx_labels(G, pos, + font_size=10, + font_weight='bold') + + plt.title("Red de conceptos relacionados") + plt.axis('off') + + return plt.gcf() + + except Exception as e: + logger.error(f"Error en visualize_concept_graph: {str(e)}") + # Retornar una figura vacía en caso de error + return plt.figure() + +def create_entity_graph(entities): + G = nx.Graph() + for entity_type, entity_list in entities.items(): + for entity in entity_list: + G.add_node(entity, type=entity_type) + for i, entity1 in enumerate(entity_list): + for entity2 in entity_list[i+1:]: + G.add_edge(entity1, entity2) + return G + +def visualize_entity_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + for entity_type, color in ENTITY_LABELS[lang_code].items(): + node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] + nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) + nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) + ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + + +################################################################################# +def create_topic_graph(topics, doc): + G = nx.Graph() + for topic in topics: + G.add_node(topic, weight=doc.text.count(topic)) + for i, topic1 in enumerate(topics): + for topic2 in topics[i+1:]: + weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) + if weight > 0: + G.add_edge(topic1, topic2, weight=weight) + return G + +def visualize_topic_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +########################################################################################### +def generate_summary(doc, lang_code): + sentences = list(doc.sents) + summary = sentences[:3] # Toma las primeras 3 oraciones como resumen + return " ".join([sent.text for sent in summary]) + +def extract_entities(doc, lang_code): + entities = defaultdict(list) + for ent in doc.ents: + if ent.label_ in ENTITY_LABELS[lang_code]: + entities[ent.label_].append(ent.text) + return dict(entities) + +def analyze_sentiment(doc, lang_code): + positive_words = sum(1 for token in doc if token.sentiment > 0) + negative_words = sum(1 for token in doc if token.sentiment < 0) + total_words = len(doc) + if positive_words > negative_words: + return "Positivo" + elif negative_words > positive_words: + return "Negativo" + else: + return "Neutral" + +def extract_topics(doc, lang_code): + vectorizer = TfidfVectorizer(stop_words='english', max_features=5) + tfidf_matrix = vectorizer.fit_transform([doc.text]) + feature_names = vectorizer.get_feature_names_out() + return list(feature_names) + +# Asegúrate de que todas las funciones necesarias estén exportadas +__all__ = [ + 'perform_semantic_analysis', + 'identify_key_concepts', + 'create_concept_graph', + 'visualize_concept_graph', + 'create_entity_graph', + 'visualize_entity_graph', + 'generate_summary', + 'extract_entities', + 'analyze_sentiment', + 'create_topic_graph', + 'visualize_topic_graph', + 'extract_topics', + 'ENTITY_LABELS', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/modules/text_analysis/semantic_analysis.py b/modules/text_analysis/semantic_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..931dd45f436f28be989264e5be860fa42913137e --- /dev/null +++ b/modules/text_analysis/semantic_analysis.py @@ -0,0 +1,484 @@ +# modules/text_analysis/semantic_analysis.py + +# 1. Importaciones estándar del sistema +import logging +import io +import base64 +from collections import Counter, defaultdict + +# 2. Importaciones de terceros +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity + +# Solo configurar si no hay handlers ya configurados +logger = logging.getLogger(__name__) + +# 4. Importaciones locales +from .stopwords import ( + process_text, + clean_text, + get_custom_stopwords, + get_stopwords_for_spacy +) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +def fig_to_bytes(fig): + """Convierte una figura de matplotlib a bytes.""" + try: + buf = io.BytesIO() + fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') + buf.seek(0) + return buf.getvalue() + except Exception as e: + logger.error(f"Error en fig_to_bytes: {str(e)}") + return None + +########################################################### +def perform_semantic_analysis(text, nlp, lang_code): + """ + Realiza el análisis semántico completo del texto. + """ + if not text or not nlp or not lang_code: + logger.error("Parámetros inválidos para el análisis semántico") + return { + 'success': False, + 'error': 'Parámetros inválidos' + } + + try: + logger.info(f"Starting semantic analysis for language: {lang_code}") + + # Procesar texto y remover stopwords + doc = nlp(text) + if not doc: + logger.error("Error al procesar el texto con spaCy") + return { + 'success': False, + 'error': 'Error al procesar el texto' + } + + # Identificar conceptos clave + logger.info("Identificando conceptos clave...") + stopwords = get_custom_stopwords(lang_code) + key_concepts = identify_key_concepts(doc, stopwords=stopwords) + + if not key_concepts: + logger.warning("No se identificaron conceptos clave") + return { + 'success': False, + 'error': 'No se pudieron identificar conceptos clave' + } + + # Crear grafo de conceptos + logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...") + concept_graph = create_concept_graph(doc, key_concepts) + + if not concept_graph.nodes(): + logger.warning("Se creó un grafo vacío") + return { + 'success': False, + 'error': 'No se pudo crear el grafo de conceptos' + } + + # Visualizar grafo + logger.info("Visualizando grafo...") + plt.clf() # Limpiar figura actual + concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) + + # Convertir a bytes + logger.info("Convirtiendo grafo a bytes...") + graph_bytes = fig_to_bytes(concept_graph_fig) + + if not graph_bytes: + logger.error("Error al convertir grafo a bytes") + return { + 'success': False, + 'error': 'Error al generar visualización' + } + + # Limpiar recursos + plt.close(concept_graph_fig) + plt.close('all') + + result = { + 'success': True, + 'key_concepts': key_concepts, + 'concept_graph': graph_bytes + } + + logger.info("Análisis semántico completado exitosamente") + return result + + except Exception as e: + logger.error(f"Error in perform_semantic_analysis: {str(e)}") + plt.close('all') # Asegurarse de limpiar recursos + return { + 'success': False, + 'error': str(e) + } + finally: + plt.close('all') # Asegurar limpieza incluso si hay error + +############################################################ + +def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): + """ + Identifica conceptos clave en el texto, excluyendo entidades nombradas. + Args: + doc: Documento procesado por spaCy + stopwords: Lista de stopwords + min_freq: Frecuencia mínima para considerar un concepto + min_length: Longitud mínima del concepto + Returns: + List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia) + """ + try: + word_freq = Counter() + + # Crear conjunto de tokens que son parte de entidades + entity_tokens = set() + for ent in doc.ents: + entity_tokens.update(token.i for token in ent) + + # Procesar tokens + for token in doc: + # Verificar si el token no es parte de una entidad nombrada + if (token.i not in entity_tokens and # No es parte de una entidad + token.lemma_.lower() not in stopwords and # No es stopword + len(token.lemma_) >= min_length and # Longitud mínima + token.is_alpha and # Es alfabético + not token.is_punct and # No es puntuación + not token.like_num and # No es número + not token.is_space and # No es espacio + not token.is_stop and # No es stopword de spaCy + not token.pos_ == 'PROPN' and # No es nombre propio + not token.pos_ == 'SYM' and # No es símbolo + not token.pos_ == 'NUM' and # No es número + not token.pos_ == 'X'): # No es otro + + # Convertir a minúsculas y añadir al contador + word_freq[token.lemma_.lower()] += 1 + + # Filtrar conceptos por frecuencia mínima y ordenar por frecuencia + concepts = [(word, freq) for word, freq in word_freq.items() + if freq >= min_freq] + concepts.sort(key=lambda x: x[1], reverse=True) + + logger.info(f"Identified {len(concepts)} key concepts after excluding entities") + return concepts[:10] + + except Exception as e: + logger.error(f"Error en identify_key_concepts: {str(e)}") + return [] + +######################################################################## + +def create_concept_graph(doc, key_concepts): + """ + Crea un grafo de relaciones entre conceptos, ignorando entidades. + Args: + doc: Documento procesado por spaCy + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + nx.Graph: Grafo de conceptos + """ + try: + G = nx.Graph() + + # Crear un conjunto de conceptos clave para búsqueda rápida + concept_words = {concept[0].lower() for concept in key_concepts} + + # Crear conjunto de tokens que son parte de entidades + entity_tokens = set() + for ent in doc.ents: + entity_tokens.update(token.i for token in ent) + + # Añadir nodos al grafo + for concept, freq in key_concepts: + G.add_node(concept.lower(), weight=freq) + + # Analizar cada oración + for sent in doc.sents: + # Obtener conceptos en la oración actual, excluyendo entidades + current_concepts = [] + for token in sent: + if (token.i not in entity_tokens and + token.lemma_.lower() in concept_words): + current_concepts.append(token.lemma_.lower()) + + # Crear conexiones entre conceptos en la misma oración + for i, concept1 in enumerate(current_concepts): + for concept2 in current_concepts[i+1:]: + if concept1 != concept2: + if G.has_edge(concept1, concept2): + G[concept1][concept2]['weight'] += 1 + else: + G.add_edge(concept1, concept2, weight=1) + + return G + + except Exception as e: + logger.error(f"Error en create_concept_graph: {str(e)}") + return nx.Graph() + +############################################################################### + +def visualize_concept_graph(G, lang_code): + """ + Visualiza el grafo de conceptos con layout consistente. + Args: + G: networkx.Graph - Grafo de conceptos + lang_code: str - Código del idioma + Returns: + matplotlib.figure.Figure - Figura del grafo + """ + try: + # Crear nueva figura con mayor tamaño y definir los ejes explícitamente + fig, ax = plt.subplots(figsize=(15, 10)) + + if not G.nodes(): + logger.warning("Grafo vacío, retornando figura vacía") + return fig + + # Convertir grafo no dirigido a dirigido para mostrar flechas + DG = nx.DiGraph(G) + + # Calcular centralidad de los nodos para el color + centrality = nx.degree_centrality(G) + + # Establecer semilla para reproducibilidad + seed = 42 + + # Calcular layout con parámetros fijos + pos = nx.spring_layout( + DG, + k=2, # Distancia ideal entre nodos + iterations=50, # Número de iteraciones + seed=seed # Semilla fija para reproducibilidad + ) + + # Calcular factor de escala basado en número de nodos + num_nodes = len(DG.nodes()) + scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200 + + # Obtener pesos ajustados + node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()] + edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()] + + # Crear mapa de colores basado en centralidad + node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()] + + # Dibujar nodos + nodes = nx.draw_networkx_nodes( + DG, + pos, + node_size=node_weights, + node_color=node_colors, + alpha=0.7, + ax=ax + ) + + # Dibujar aristas con flechas + edges = nx.draw_networkx_edges( + DG, + pos, + width=edge_weights, + alpha=0.6, + edge_color='gray', + arrows=True, + arrowsize=20, + arrowstyle='->', + connectionstyle='arc3,rad=0.2', + ax=ax + ) + + # Ajustar tamaño de fuente según número de nodos + font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8 + + # Dibujar etiquetas con fondo blanco para mejor legibilidad + labels = nx.draw_networkx_labels( + DG, + pos, + font_size=font_size, + font_weight='bold', + bbox=dict( + facecolor='white', + edgecolor='none', + alpha=0.7 + ), + ax=ax + ) + + # Añadir leyenda de centralidad + sm = plt.cm.ScalarMappable( + cmap=plt.cm.viridis, + norm=plt.Normalize(vmin=0, vmax=1) + ) + sm.set_array([]) + plt.colorbar(sm, ax=ax, label='Centralidad del concepto') + + plt.title("Red de conceptos relacionados", pad=20, fontsize=14) + ax.set_axis_off() + + # Ajustar el layout para que la barra de color no se superponga + plt.tight_layout() + + return fig + + except Exception as e: + logger.error(f"Error en visualize_concept_graph: {str(e)}") + return plt.figure() # Retornar figura vacía en caso de error + +######################################################################## +def create_entity_graph(entities): + G = nx.Graph() + for entity_type, entity_list in entities.items(): + for entity in entity_list: + G.add_node(entity, type=entity_type) + for i, entity1 in enumerate(entity_list): + for entity2 in entity_list[i+1:]: + G.add_edge(entity1, entity2) + return G + + +############################################################# +def visualize_entity_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + for entity_type, color in ENTITY_LABELS[lang_code].items(): + node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] + nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) + nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) + ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + + +################################################################################# +def create_topic_graph(topics, doc): + G = nx.Graph() + for topic in topics: + G.add_node(topic, weight=doc.text.count(topic)) + for i, topic1 in enumerate(topics): + for topic2 in topics[i+1:]: + weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) + if weight > 0: + G.add_edge(topic1, topic2, weight=weight) + return G + +def visualize_topic_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +########################################################################################### +def generate_summary(doc, lang_code): + sentences = list(doc.sents) + summary = sentences[:3] # Toma las primeras 3 oraciones como resumen + return " ".join([sent.text for sent in summary]) + +def extract_entities(doc, lang_code): + entities = defaultdict(list) + for ent in doc.ents: + if ent.label_ in ENTITY_LABELS[lang_code]: + entities[ent.label_].append(ent.text) + return dict(entities) + +def analyze_sentiment(doc, lang_code): + positive_words = sum(1 for token in doc if token.sentiment > 0) + negative_words = sum(1 for token in doc if token.sentiment < 0) + total_words = len(doc) + if positive_words > negative_words: + return "Positivo" + elif negative_words > positive_words: + return "Negativo" + else: + return "Neutral" + +def extract_topics(doc, lang_code): + vectorizer = TfidfVectorizer(stop_words='english', max_features=5) + tfidf_matrix = vectorizer.fit_transform([doc.text]) + feature_names = vectorizer.get_feature_names_out() + return list(feature_names) + +# Asegúrate de que todas las funciones necesarias estén exportadas +__all__ = [ + 'perform_semantic_analysis', + 'identify_key_concepts', + 'create_concept_graph', + 'visualize_concept_graph', + 'fig_to_bytes', # Faltaba esta coma + 'ENTITY_LABELS', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/modules/text_analysis/semantic_analysis_v0.py b/modules/text_analysis/semantic_analysis_v0.py new file mode 100644 index 0000000000000000000000000000000000000000..c1b4d7c9379a0c76f686b8be2e529cf4311cceb5 --- /dev/null +++ b/modules/text_analysis/semantic_analysis_v0.py @@ -0,0 +1,264 @@ +#semantic_analysis.py +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +from collections import Counter +from collections import defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', + 'ADP': 'Preposición', + 'ADV': 'Adverbio', + 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', + 'DET': 'Determinante', + 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', + 'NUM': 'Número', + 'PART': 'Partícula', + 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', + 'SCONJ': 'Conjunción Subordinante', + 'SYM': 'Símbolo', + 'VERB': 'Verbo', + 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', + 'ADP': 'Preposition', + 'ADV': 'Adverb', + 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', + 'DET': 'Determiner', + 'INTJ': 'Interjection', + 'NOUN': 'Noun', + 'NUM': 'Number', + 'PART': 'Particle', + 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', + 'SCONJ': 'Subordinating Conjunction', + 'SYM': 'Symbol', + 'VERB': 'Verb', + 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', + 'ADP': 'Préposition', + 'ADV': 'Adverbe', + 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', + 'DET': 'Déterminant', + 'INTJ': 'Interjection', + 'NOUN': 'Nom', + 'NUM': 'Nombre', + 'PART': 'Particule', + 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', + 'SCONJ': 'Conjonction de Subordination', + 'SYM': 'Symbole', + 'VERB': 'Verbe', + 'X': 'Autre', + } +} +######################################################################################################################################## + +# Definimos las etiquetas y colores para cada idioma +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Conceptos": "lightgreen", + "Lugares": "lightcoral", + "Fechas": "lightyellow" + }, + 'en': { + "People": "lightblue", + "Concepts": "lightgreen", + "Places": "lightcoral", + "Dates": "lightyellow" + }, + 'fr': { + "Personnes": "lightblue", + "Concepts": "lightgreen", + "Lieux": "lightcoral", + "Dates": "lightyellow" + } +} + +######################################################################################################### +def count_pos(doc): + return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT') + +##################################################################################################################### + +def create_semantic_graph(doc, lang): + G = nx.Graph() + word_freq = defaultdict(int) + lemma_to_word = {} + lemma_to_pos = {} + + # Count frequencies of lemmas and map lemmas to their most common word form and POS + for token in doc: + if token.pos_ in ['NOUN', 'VERB']: + lemma = token.lemma_.lower() + word_freq[lemma] += 1 + if lemma not in lemma_to_word or token.text.lower() == lemma: + lemma_to_word[lemma] = token.text + lemma_to_pos[lemma] = token.pos_ + + # Get top 20 most frequent lemmas + top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]] + + # Add nodes + for lemma in top_lemmas: + word = lemma_to_word[lemma] + G.add_node(word, pos=lemma_to_pos[lemma]) + + # Add edges + for token in doc: + if token.lemma_.lower() in top_lemmas: + if token.head.lemma_.lower() in top_lemmas: + source = lemma_to_word[token.lemma_.lower()] + target = lemma_to_word[token.head.lemma_.lower()] + if source != target: # Avoid self-loops + G.add_edge(source, target, label=token.dep_) + + return G, word_freq + +############################################################################################################################################ + +def visualize_semantic_relations(doc, lang): + G = nx.Graph() + word_freq = defaultdict(int) + lemma_to_word = {} + lemma_to_pos = {} + + # Count frequencies of lemmas and map lemmas to their most common word form and POS + for token in doc: + if token.pos_ in ['NOUN', 'VERB']: + lemma = token.lemma_.lower() + word_freq[lemma] += 1 + if lemma not in lemma_to_word or token.text.lower() == lemma: + lemma_to_word[lemma] = token.text + lemma_to_pos[lemma] = token.pos_ + + # Get top 20 most frequent lemmas + top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]] + + # Add nodes + for lemma in top_lemmas: + word = lemma_to_word[lemma] + G.add_node(word, pos=lemma_to_pos[lemma]) + + # Add edges + for token in doc: + if token.lemma_.lower() in top_lemmas: + if token.head.lemma_.lower() in top_lemmas: + source = lemma_to_word[token.lemma_.lower()] + target = lemma_to_word[token.head.lemma_.lower()] + if source != target: # Avoid self-loops + G.add_edge(source, target, label=token.dep_) + + fig, ax = plt.subplots(figsize=(36, 27)) + pos = nx.spring_layout(G, k=0.7, iterations=50) + + node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()] + + nx.draw(G, pos, node_color=node_colors, with_labels=True, + node_size=10000, + font_size=16, + font_weight='bold', + arrows=True, + arrowsize=30, + width=3, + edge_color='gray', + ax=ax) + + edge_labels = nx.get_edge_attributes(G, 'label') + nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax) + + title = { + 'es': "Relaciones Semánticas Relevantes", + 'en': "Relevant Semantic Relations", + 'fr': "Relations Sémantiques Pertinentes" + } + ax.set_title(title[lang], fontsize=24, fontweight='bold') + ax.axis('off') + + legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none', + label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}") + for pos in ['NOUN', 'VERB']] + ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16) + + return fig + +############################################################################################################################################ +def identify_and_contextualize_entities(doc, lang): + entities = [] + for ent in doc.ents: + # Obtener el contexto (3 palabras antes y después de la entidad) + start = max(0, ent.start - 3) + end = min(len(doc), ent.end + 3) + context = doc[start:end].text + + entities.append({ + 'text': ent.text, + 'label': ent.label_, + 'start': ent.start, + 'end': ent.end, + 'context': context + }) + + # Identificar conceptos clave (usando sustantivos y verbos más frecuentes) + word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) + key_concepts = word_freq.most_common(10) # Top 10 conceptos clave + + return entities, key_concepts + + +############################################################################################################################################ +def perform_semantic_analysis(text, nlp, lang): + doc = nlp(text) + + # Identificar entidades y conceptos clave + entities, key_concepts = identify_and_contextualize_entities(doc, lang) + + # Visualizar relaciones semánticas + relations_graph = visualize_semantic_relations(doc, lang) + + # Imprimir entidades para depuración + print(f"Entidades encontradas ({lang}):") + for ent in doc.ents: + print(f"{ent.text} - {ent.label_}") + + relations_graph = visualize_semantic_relations(doc, lang) + return { + 'entities': entities, + 'key_concepts': key_concepts, + 'relations_graph': relations_graph + } + +__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS', 'identify_and_contextualize_entities'] \ No newline at end of file diff --git a/modules/text_analysis/semantic_analysis_v00.py b/modules/text_analysis/semantic_analysis_v00.py new file mode 100644 index 0000000000000000000000000000000000000000..22a37a74e462656aeb061fc8b6a65723d1a654a5 --- /dev/null +++ b/modules/text_analysis/semantic_analysis_v00.py @@ -0,0 +1,153 @@ +#semantic_analysis.py +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +from collections import Counter, defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +def identify_and_contextualize_entities(doc, lang): + entities = [] + for ent in doc.ents: + # Obtener el contexto (3 palabras antes y después de la entidad) + start = max(0, ent.start - 3) + end = min(len(doc), ent.end + 3) + context = doc[start:end].text + + # Mapear las etiquetas de spaCy a nuestras categorías + if ent.label_ in ['PERSON', 'ORG']: + category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes" + elif ent.label_ in ['LOC', 'GPE']: + category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux" + elif ent.label_ in ['PRODUCT']: + category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions" + elif ent.label_ in ['DATE', 'TIME']: + category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates" + else: + category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts" + + entities.append({ + 'text': ent.text, + 'label': category, + 'start': ent.start, + 'end': ent.end, + 'context': context + }) + + # Identificar conceptos clave (usando sustantivos y verbos más frecuentes) + word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) + key_concepts = word_freq.most_common(10) # Top 10 conceptos clave + + return entities, key_concepts + +def create_concept_graph(text, concepts): + vectorizer = TfidfVectorizer() + tfidf_matrix = vectorizer.fit_transform([text]) + concept_vectors = vectorizer.transform(concepts) + similarity_matrix = cosine_similarity(concept_vectors, concept_vectors) + + G = nx.Graph() + for i, concept in enumerate(concepts): + G.add_node(concept) + for j in range(i+1, len(concepts)): + if similarity_matrix[i][j] > 0.1: + G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j]) + + return G + +def visualize_concept_graph(G, lang): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + + nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + nx.draw_networkx_edges(G, pos, width=1, ax=ax) + + edge_labels = nx.get_edge_attributes(G, 'weight') + nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax) + + title = { + 'es': "Relaciones Conceptuales", + 'en': "Conceptual Relations", + 'fr': "Relations Conceptuelles" + } + ax.set_title(title[lang], fontsize=16) + ax.axis('off') + + return fig + +def perform_semantic_analysis(text, nlp, lang): + doc = nlp(text) + + # Identificar entidades y conceptos clave + entities, key_concepts = identify_and_contextualize_entities(doc, lang) + + # Crear y visualizar grafo de conceptos + concepts = [concept for concept, _ in key_concepts] + concept_graph = create_concept_graph(text, concepts) + relations_graph = visualize_concept_graph(concept_graph, lang) + + return { + 'entities': entities, + 'key_concepts': key_concepts, + 'relations_graph': relations_graph + } + +__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] \ No newline at end of file diff --git a/modules/text_analysis/semantic_analysis_v23-9-2024.py b/modules/text_analysis/semantic_analysis_v23-9-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..7e1c435e13ca0c6b33bcb707ad5079c48707c581 --- /dev/null +++ b/modules/text_analysis/semantic_analysis_v23-9-2024.py @@ -0,0 +1,247 @@ +#semantic_analysis.py +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +import io +import base64 +from collections import Counter, defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity +import logging + +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +############################################################################################################## +def perform_semantic_analysis(text, nlp, lang_code): + logger.info(f"Starting semantic analysis for language: {lang_code}") + try: + doc = nlp(text) + + # Conceptos clave y grafo de conceptos + key_concepts = identify_key_concepts(doc) + concept_graph = create_concept_graph(doc, key_concepts) + concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) + #concept_graph_html = fig_to_html(concept_graph_fig) + + # Entidades y grafo de entidades + entities = extract_entities(doc, lang_code) + entity_graph = create_entity_graph(entities) + entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) + #entity_graph_html = fig_to_html(entity_graph_fig) + + logger.info("Semantic analysis completed successfully") + return { + 'doc': doc, + 'key_concepts': key_concepts, + 'concept_graph': concept_graph_fig, + 'entities': entities, + 'entity_graph': entity_graph_fig + } + except Exception as e: + logger.error(f"Error in perform_semantic_analysis: {str(e)}") + raise + +''' +def fig_to_html(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' +''' + + +def identify_key_concepts(doc): + logger.info("Identifying key concepts") + word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) + key_concepts = word_freq.most_common(10) + return [(concept, float(freq)) for concept, freq in key_concepts] + + +def create_concept_graph(doc, key_concepts): + G = nx.Graph() + for concept, freq in key_concepts: + G.add_node(concept, weight=freq) + for sent in doc.sents: + sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)] + for i, concept1 in enumerate(sent_concepts): + for concept2 in sent_concepts[i+1:]: + if G.has_edge(concept1, concept2): + G[concept1][concept2]['weight'] += 1 + else: + G.add_edge(concept1, concept2, weight=1) + return G + +def visualize_concept_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G, k=0.5, iterations=50) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + title = { + 'es': "Relaciones entre Conceptos Clave", + 'en': "Key Concept Relations", + 'fr': "Relations entre Concepts Clés" + } + ax.set_title(title[lang_code], fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +def create_entity_graph(entities): + G = nx.Graph() + for entity_type, entity_list in entities.items(): + for entity in entity_list: + G.add_node(entity, type=entity_type) + for i, entity1 in enumerate(entity_list): + for entity2 in entity_list[i+1:]: + G.add_edge(entity1, entity2) + return G + +def visualize_entity_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + for entity_type, color in ENTITY_LABELS[lang_code].items(): + node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] + nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) + nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) + ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + + +################################################################################# +def create_topic_graph(topics, doc): + G = nx.Graph() + for topic in topics: + G.add_node(topic, weight=doc.text.count(topic)) + for i, topic1 in enumerate(topics): + for topic2 in topics[i+1:]: + weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) + if weight > 0: + G.add_edge(topic1, topic2, weight=weight) + return G + +def visualize_topic_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +########################################################################################### +def generate_summary(doc, lang_code): + sentences = list(doc.sents) + summary = sentences[:3] # Toma las primeras 3 oraciones como resumen + return " ".join([sent.text for sent in summary]) + +def extract_entities(doc, lang_code): + entities = defaultdict(list) + for ent in doc.ents: + if ent.label_ in ENTITY_LABELS[lang_code]: + entities[ent.label_].append(ent.text) + return dict(entities) + +def analyze_sentiment(doc, lang_code): + positive_words = sum(1 for token in doc if token.sentiment > 0) + negative_words = sum(1 for token in doc if token.sentiment < 0) + total_words = len(doc) + if positive_words > negative_words: + return "Positivo" + elif negative_words > positive_words: + return "Negativo" + else: + return "Neutral" + +def extract_topics(doc, lang_code): + vectorizer = TfidfVectorizer(stop_words='english', max_features=5) + tfidf_matrix = vectorizer.fit_transform([doc.text]) + feature_names = vectorizer.get_feature_names_out() + return list(feature_names) + +# Asegúrate de que todas las funciones necesarias estén exportadas +__all__ = [ + 'perform_semantic_analysis', + 'identify_key_concepts', + 'create_concept_graph', + 'visualize_concept_graph', + 'create_entity_graph', + 'visualize_entity_graph', + 'generate_summary', + 'extract_entities', + 'analyze_sentiment', + 'create_topic_graph', + 'visualize_topic_graph', + 'extract_topics', + 'ENTITY_LABELS', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/modules/text_analysis/stopwords.py b/modules/text_analysis/stopwords.py new file mode 100644 index 0000000000000000000000000000000000000000..844d14f3a10108599907f31e65e63d0189e744d0 --- /dev/null +++ b/modules/text_analysis/stopwords.py @@ -0,0 +1,188 @@ +# modules/text_analysis/stopwords.py +import spacy +from typing import Set, List + +def get_custom_stopwords(lang_code: str) -> Set[str]: + """ + Retorna un conjunto de stopwords personalizadas según el idioma. + """ + # Stopwords base en español + # Símbolos, números y caracteres especiales + + SYMBOLS_AND_NUMBERS = { + # Números + '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', + + # Signos de puntuación básicos + '.', ',', ';', ':', '!', '¡', '?', '¿', '"', "'", + + # Símbolos matemáticos + '+', '-', '*', '/', '=', '<', '>', '%', + + # Paréntesis y otros delimitadores + '(', ')', '[', ']', '{', '}', + + # Otros símbolos comunes + '@', '#', '$', '€', '£', '¥', '&', '_', '|', '\\', '/', + + # Caracteres especiales + '•', '·', '…', '—', '–', '°', '´', '`', '^', '¨', + + # Símbolos de ordenamiento + '§', '†', '‡', '¶', + + # Símbolos de copyright y marcas registradas + '©', '®', '™', + + # Fracciones comunes + '½', '¼', '¾', '⅓', '⅔', + + # Otros caracteres especiales + '±', '×', '÷', '∞', '≠', '≤', '≥', '≈', '∑', '∏', '√', + + # Espacios y caracteres de control + ' ', '\t', '\n', '\r', '\f', '\v' +} + spanish_stopwords = { + 'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas', 'y', 'o', 'pero', 'si', + 'de', 'del', 'al', 'a', 'ante', 'bajo', 'cabe', 'con', 'contra', 'de', 'desde', + 'en', 'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin', 'sobre', 'tras', + 'que', 'más', 'este', 'esta', 'estos', 'estas', 'ese', 'esa', 'esos', 'esas', + 'muy', 'mucho', 'muchos', 'muchas', 'ser', 'estar', 'tener', 'hacer', 'como', + 'cuando', 'donde', 'quien', 'cual', 'mientras', 'sino', 'pues', 'porque', + 'cada', 'cual', 'cuales', 'cuanta', 'cuantas', 'cuanto', 'cuantos', 'uno', 'dos', 'tres', 'cuatro', 'cinco', 'seis', 'siete', 'ocho', 'nueve', 'diez', + 'once', 'doce', 'trece', 'catorce', 'quince', 'dieciséis', 'diecisiete', 'dieciocho', 'diecinueve', 'veinte', + 'treinta', 'cuarenta', 'cincuenta', 'sesenta', 'setenta', 'ochenta', 'noventa', 'cien', 'mil', 'millón', + 'primero', 'segundo', 'tercero', 'cuarto', 'quinto', 'sexto', 'séptimo', 'octavo', 'noveno', 'décimo' + } + + # Stopwords base en inglés + english_stopwords = { + 'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'i', 'it', 'for', + 'not', 'on', 'with', 'he', 'as', 'you', 'do', 'at', 'this', 'but', 'his', + 'by', 'from', 'they', 'we', 'say', 'her', 'she', 'or', 'an', 'will', 'my', + 'one', 'all', 'would', 'there', 'their', 'what', 'so', 'up', 'out', 'if', + 'about', 'who', 'get', 'which', 'go', 'me', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', + 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen', 'twenty', + 'thirty', 'forty', 'fifty', 'sixty', 'seventy', 'eighty', 'ninety', 'hundred', 'thousand', 'million', + 'first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eighth', 'ninth', 'tenth' + } + + french_stopwords = { + 'le', 'la', 'les', 'un', 'une', 'des', 'du', 'de', 'et', 'ou', 'mais', 'si', + 'à', 'dans', 'sur', 'pour', 'en', 'vers', 'par', 'avec', 'sans', 'sous', 'sur', + 'que', 'qui', 'quoi', 'dont', 'où', 'quand', 'comment', 'pourquoi', + 'ce', 'cet', 'cette', 'ces', 'mon', 'ton', 'son', 'ma', 'ta', 'sa', + 'mes', 'tes', 'ses', 'notre', 'votre', 'leur', 'nos', 'vos', 'leurs', + 'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils', 'elles', + 'me', 'te', 'se', 'lui', 'leur', 'y', 'en', 'plus', 'moins', + 'très', 'trop', 'peu', 'beaucoup', 'assez', 'tout', 'toute', 'tous', 'toutes', + 'autre', 'autres', 'même', 'mêmes', 'tel', 'telle', 'tels', 'telles', + 'quel', 'quelle', 'quels', 'quelles', 'quelque', 'quelques', + 'aucun', 'aucune', 'aucuns', 'aucunes', 'plusieurs', 'chaque', + 'être', 'avoir', 'faire', 'dire', 'aller', 'venir', 'voir', 'savoir', + 'pouvoir', 'vouloir', 'falloir', 'devoir', 'croire', 'sembler', + 'alors', 'ainsi', 'car', 'donc', 'or', 'ni', 'ne', 'pas', 'plus', + 'jamais', 'toujours', 'parfois', 'souvent', 'maintenant', 'après', + 'avant', 'pendant', 'depuis', 'déjà', 'encore', 'ici', 'là', + 'oui', 'non', 'peut-être', 'bien', 'mal', 'aussi', 'surtout', + 'c\'est', 'j\'ai', 'n\'est', 'd\'un', 'd\'une', 'qu\'il', 'qu\'elle', + 'un', 'deux', 'trois', 'quatre', 'cinq', 'six', 'sept', 'huit', 'neuf', 'dix', + 'onze', 'douze', 'treize', 'quatorze', 'quinze', 'seize', 'dix-sept', 'dix-huit', 'dix-neuf', 'vingt', + 'trente', 'quarante', 'cinquante', 'soixante', 'soixante-dix', 'quatre-vingts', 'quatre-vingt-dix', 'cent', 'mille', 'million', + 'premier', 'deuxième', 'troisième', 'quatrième', 'cinquième', 'sixième', 'septième', 'huitième', 'neuvième', 'dixième' +} + + stopwords_dict = { + 'es': spanish_stopwords, + 'en': english_stopwords, + 'fr': french_stopwords + } + + # Obtener stopwords del idioma especificado o devolver conjunto vacío si no existe + return stopwords_dict.get(lang_code, set()) + +def process_text(text: str, lang_code: str, nlp) -> List[str]: + """ + Procesa un texto completo, removiendo stopwords, símbolos y números. + + Args: + text (str): Texto a procesar + lang_code (str): Código del idioma ('es', 'en', 'fr') + nlp: Modelo de spaCy cargado + + Returns: + List[str]: Lista de tokens procesados + """ + try: + # Obtener stopwords personalizadas + custom_stopwords = get_custom_stopwords(lang_code) + + # Procesar el texto con spaCy + doc = nlp(text) + + # Filtrar y procesar tokens + processed_tokens = [] + for token in doc: + # Convertir a minúsculas y obtener el lema + lemma = token.lemma_.lower() + + # Aplicar filtros + if (len(lemma) >= 2 and # Longitud mínima + lemma not in custom_stopwords and # No es stopword + not token.is_punct and # No es puntuación + not token.is_space and # No es espacio + lemma not in SYMBOLS_AND_NUMBERS and # No es símbolo o número + not any(char in string.punctuation for char in lemma) and # No contiene puntuación + not any(char.isdigit() for char in lemma)): # No contiene números + + processed_tokens.append(lemma) + + return processed_tokens + + except Exception as e: + logger.error(f"Error en process_text: {str(e)}") + return [] + +def clean_text(text: str) -> str: + """ + Limpia un texto removiendo caracteres especiales y normalizando espacios. + + Args: + text (str): Texto a limpiar + + Returns: + str: Texto limpio + """ + # Remover caracteres especiales y números + cleaned = ''.join(char for char in text if char not in SYMBOLS_AND_NUMBERS) + + # Normalizar espacios + cleaned = ' '.join(cleaned.split()) + + return cleaned.strip() + +def get_stopwords_for_spacy(lang_code: str, nlp) -> Set[str]: + """ + Combina stopwords personalizadas con las de spaCy. + + Args: + lang_code (str): Código del idioma + nlp: Modelo de spaCy + + Returns: + Set[str]: Conjunto combinado de stopwords + """ + custom_stops = get_custom_stopwords(lang_code) + spacy_stops = nlp.Defaults.stop_words if hasattr(nlp.Defaults, 'stop_words') else set() + + return custom_stops.union(spacy_stops) + +# Asegúrate de exportar todas las funciones necesarias +__all__ = [ + 'get_custom_stopwords', + 'process_text', + 'clean_text', + 'get_stopwords_for_spacy', + 'SYMBOLS_AND_NUMBERS' +] \ No newline at end of file diff --git a/modules/text_analysis/structure_analysis.py b/modules/text_analysis/structure_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/style_analysis.py b/modules/text_analysis/style_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/thematic_analysis.py b/modules/text_analysis/thematic_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/txt.txt b/modules/text_analysis/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/text_analysis/vocabulary_analysis.py b/modules/text_analysis/vocabulary_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/ui/__init__.py b/modules/ui/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/ui/__pycache__/__init__.cpython-311.pyc b/modules/ui/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ac9684e4704cf8e942f2a15e5fea186fe3be7a0 Binary files /dev/null and b/modules/ui/__pycache__/__init__.cpython-311.pyc differ diff --git a/modules/ui/__pycache__/ui.cpython-311.pyc b/modules/ui/__pycache__/ui.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcda6c057d448090e4adece4b140c7714344d570 Binary files /dev/null and b/modules/ui/__pycache__/ui.cpython-311.pyc differ diff --git a/modules/ui/txt.txt b/modules/ui/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/ui/ui backUpError_24-9-24.py b/modules/ui/ui backUpError_24-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..e5ce2b4a89d3c1f9bba42093a838ff9b97f7cc17 --- /dev/null +++ b/modules/ui/ui backUpError_24-9-24.py @@ -0,0 +1,473 @@ +# Importaciones generales +import streamlit as st +from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player +from streamlit_float import * +from streamlit_antd_components import * +from streamlit_option_menu import * +from streamlit_chat import * +import logging +import time +from datetime import datetime +import re +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import pandas as pd +import numpy as np +from spacy import displacy +import random + +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +# Importaciones locales +from translations import get_translations + +# Importaciones locales +from ..studentact.student_activities_v2 import display_student_progress + +# Importaciones directas de los módulos necesarios +from ..auth.auth import authenticate_user, register_user + + +from ..database.database_oldFromV2 import ( + get_student_data, + store_application_request, + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + create_admin_user, + create_student_user, + store_user_feedback +) + +from ..admin.admin_ui import admin_page + +from ..morphosyntax.morphosyntax_interface import display_morphosyntax_interface + +from ..semantic.semantic_interface_68ok import display_semantic_interface + +from ..discourse.discourse_interface import display_discourse_interface + +# Nueva importación para semantic_float_init +#from ..semantic.semantic_float import semantic_float_init +from ..semantic.semantic_float68ok import semantic_float_init + + +############### Iniciar sesión ###################### + + +def initialize_session_state(): + if 'initialized' not in st.session_state: + st.session_state.clear() + st.session_state.initialized = True + st.session_state.logged_in = False + st.session_state.page = 'login' + st.session_state.username = None + st.session_state.role = None + st.session_state.lang_code = 'es' # Idioma por defecto + +def main(): + logger.info(f"Entrando en main() - Página actual: {st.session_state.page}") + + if 'nlp_models' not in st.session_state: + st.error("Los modelos NLP no están inicializados. Por favor, reinicie la aplicación.") + return + + semantic_float_init() + + if st.session_state.page == 'login': + login_register_page() + elif st.session_state.page == 'admin': + logger.info("Mostrando página de admin") + admin_page() + elif st.session_state.page == 'user': + user_page() + else: + logger.warning(f"Página no reconocida: {st.session_state.page}") + st.error(f"Página no reconocida: {st.session_state.page}") + + logger.info(f"Saliendo de main() - Estado final de la sesión: {st.session_state}") + +############### Después de iniciar sesión ###################### + +def user_page(): + logger.info(f"Entrando en user_page para el usuario: {st.session_state.username}") + + if 'user_data' not in st.session_state or time.time() - st.session_state.get('last_data_fetch', 0) > 60: + with st.spinner("Cargando tus datos..."): + try: + st.session_state.user_data = get_student_data(st.session_state.username) + st.session_state.last_data_fetch = time.time() + except Exception as e: + logger.error(f"Error al obtener datos del usuario: {str(e)}") + st.error("Hubo un problema al cargar tus datos. Por favor, intenta recargar la página.") + return + + logger.info(f"Idioma actual: {st.session_state.lang_code}") + logger.info(f"Modelos NLP cargados: {'nlp_models' in st.session_state}") + + languages = {'Español': 'es', 'English': 'en', 'Français': 'fr'} + + if 'lang_code' not in st.session_state: + st.session_state.lang_code = 'es' # Idioma por defecto + elif not isinstance(st.session_state.lang_code, str) or st.session_state.lang_code not in ['es', 'en', 'fr']: + logger.warning(f"Invalid lang_code: {st.session_state.lang_code}. Setting to default 'es'") + st.session_state.lang_code = 'es' + + # Obtener traducciones + t = get_translations(st.session_state.lang_code) + + # Estilos CSS personalizados (mantener los estilos existentes) + st.markdown(""" + + """, unsafe_allow_html=True) + + # Crear un contenedor para la barra superior + with st.container(): + col1, col2, col3 = st.columns([2, 2, 1]) + with col1: + st.markdown(f"

{t['welcome']}, {st.session_state.username}

", unsafe_allow_html=True) + with col2: + selected_lang = st.selectbox( + t['select_language'], + list(languages.keys()), + index=list(languages.values()).index(st.session_state.lang_code), + key=f"language_selector_{st.session_state.username}_{st.session_state.lang_code}" + ) + new_lang_code = languages[selected_lang] + if st.session_state.lang_code != new_lang_code: + st.session_state.lang_code = new_lang_code + st.rerun() # Esto recargará la página con el nuevo idioma + with col3: + if st.button(t['logout'], key=f"logout_button_{st.session_state.username}_{st.session_state.lang_code}"): + # Implementación temporal de logout + for key in list(st.session_state.keys()): + del st.session_state[key] + st.rerun() + + st.markdown("---") + + # Mostrar resumen de análisis + #st.subheader(t['analysis_summary']) + #col1, col2, col3 = st.columns(3) + #col1.metric(t['morpho_analyses'], len(st.session_state.user_data['morphosyntax_analyses'])) + #col2.metric(t['semantic_analyses'], len(st.session_state.user_data['semantic_analyses'])) + #col3.metric(t['discourse_analyses'], len(st.session_state.user_data['discourse_analyses'])) + + + # Opción para exportar datos + #if st.button(t['export_all_analyses']): + # st.info(t['export_in_progress']) + # Aquí iría la llamada a export_data cuando esté implementada + # export_data(st.session_state.user_data, t) + + # Crear las pestañas + tabs = st.tabs([ + t['morpho_tab'], + t['semantic_tab'], + t['discourse_tab'], + t['activities_tab'], + t['feedback_tab'] + ]) + + # Usar las pestañas creadas + for i, (tab, func) in enumerate(zip(tabs, [ + display_morphosyntax_interface, + display_semantic_interface, + display_discourse_interface, + display_student_progress, + display_feedback_form + ])): + with tab: + try: + if i < 5: # Para las primeras tres pestañas (análisis) + func(st.session_state.lang_code, st.session_state.nlp_models, t, st.session_state.user_data) + elif i == 3: # Para la pestaña de progreso del estudiante + func(st.session_state.username, st.session_state.lang_code, t, st.session_state.user_data) + else: # Para la pestaña de feedback + func(st.session_state.lang_code, t) + except Exception as e: + st.error(f"Error al cargar la pestaña: {str(e)}") + logger.error(f"Error en la pestaña {i}: {str(e)}", exc_info=True) + + logger.debug(f"Translations loaded: {t}") # Log para depuración + logger.info("Finalizada la renderización de user_page") + + + +##################################### + +def login_register_page(): + logger.info("Renderizando página de login/registro") + st.title("AIdeaText") + st.write("Bienvenido. Por favor, inicie sesión o regístrese.") + + left_column, right_column = st.columns([1, 3]) + + with left_column: + tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"]) + + with tab1: + login_form() + + with tab2: + register_form() + + with right_column: + display_videos_and_info() + + +################################################### +def login_form(): + with st.form("login_form"): + username = st.text_input("Correo electrónico") + password = st.text_input("Contraseña", type="password") + submit_button = st.form_submit_button("Iniciar Sesión") + + if submit_button: + success, role = authenticate_user(username, password) + if success: + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = role + st.session_state.page = 'admin' if role == 'Administrador' else 'user' + st.rerun() + else: + st.error("Credenciales incorrectas") + + +################################################### +def register_form(): + st.header("Solicitar prueba de la aplicación") + + name = st.text_input("Nombre completo") + email = st.text_input("Correo electrónico institucional") + institution = st.text_input("Institución") + role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"]) + reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?") + + if st.button("Enviar solicitud"): + if not name or not email or not institution or not reason: + st.error("Por favor, completa todos los campos.") + elif not is_institutional_email(email): + st.error("Por favor, utiliza un correo electrónico institucional.") + else: + success = store_application_request(name, email, institution, role, reason) + if success: + st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.") + else: + st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.") + + + +################################################### +def is_institutional_email(email): + forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] + return not any(domain in email.lower() for domain in forbidden_domains) + + +################################################### +def display_videos_and_info(): + st.header("Videos: pitch, demos, entrevistas, otros") + + videos = { + "Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q", + "Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164", + "Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", + "Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc", + "Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY" + } + + selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys())) + + if selected_title in videos: + try: + st_player(videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + st.markdown(""" + ## Novedades de la versión actual + - Nueva función de análisis semántico + - Soporte para múltiples idiomas + - Interfaz mejorada para una mejor experiencia de usuario + """) + +def display_feedback_form(lang_code, t): + logging.info(f"display_feedback_form called with lang_code: {lang_code}") + + st.header(t['title']) + + name = st.text_input(t['name'], key=f"feedback_name_{lang_code}") + email = st.text_input(t['email'], key=f"feedback_email_{lang_code}") + feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}") + + if st.button(t['submit'], key=f"feedback_submit_{lang_code}"): + if name and email and feedback: + if store_user_feedback(st.session_state.username, name, email, feedback): + st.success(t['success']) + else: + st.error(t['error']) + else: + st.warning("Por favor, completa todos los campos.") + +''' +def display_student_progress(username, lang_code, t): + student_data = get_student_data(username) + + if student_data is None or len(student_data['entries']) == 0: + st.warning("No se encontraron datos para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + st.title(f"Progreso de {username}") + + with st.expander("Resumen de Actividades y Progreso", expanded=True): + # Resumen de actividades + total_entries = len(student_data['entries']) + st.write(f"Total de análisis realizados: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title("Tipos de análisis realizados") + ax.set_xlabel("Tipo de análisis") + ax.set_ylabel("Cantidad") + st.pyplot(fig) + + # Progreso a lo largo del tiempo + dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']] + analysis_counts = pd.Series(dates).value_counts().sort_index() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='line', ax=ax) + ax.set_title("Análisis realizados a lo largo del tiempo") + ax.set_xlabel("Fecha") + ax.set_ylabel("Cantidad de análisis") + st.pyplot(fig) + +########################################################## + with st.expander("Histórico de Análisis Morfosintácticos"): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for entry in morphosyntax_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + if entry['arc_diagrams']: + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + + + ########################################################## + with st.expander("Histórico de Análisis Semánticos"): + semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + for entry in semantic_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave + if 'key_concepts' in entry: + st.write("Conceptos clave:") + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) + #st.write("Conceptos clave:") + #st.write(concepts_str) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + + +''' + +# Definición de __all__ para especificar qué se exporta +__all__ = ['main', 'login_register_page', 'initialize_session_state'] + +# Bloque de ejecución condicional +if __name__ == "__main__": + main() diff --git a/modules/ui/ui.py b/modules/ui/ui.py new file mode 100644 index 0000000000000000000000000000000000000000..90178db6ecf908654a06f6e0b7415cf86bbbad3d --- /dev/null +++ b/modules/ui/ui.py @@ -0,0 +1,345 @@ +# modules/ui/ui.py +import streamlit as st +from streamlit_player import st_player +import logging +from datetime import datetime +from dateutil.parser import parse + +# Importaciones locales +# +from session_state import initialize_session_state, logout +# +from translations import get_translations, get_landing_translations +# +from ..auth.auth import authenticate_user, authenticate_student, authenticate_admin +# +from ..database.sql_db import store_application_request + +#from .user_page import user_page +try: + from .user_page import user_page +except ImportError: + logger.error("No se pudo importar user_page. Asegúrate de que el archivo existe.") + # Definir una función de respaldo + def user_page(lang_code, t): + st.error("La página de usuario no está disponible. Por favor, contacta al administrador.") + +from ..admin.admin_ui import admin_page + +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +############################################################# +def main(): + logger.info(f"Entrando en main() - Página actual: {st.session_state.page}") + + if 'nlp_models' not in st.session_state: + logger.error("Los modelos NLP no están inicializados.") + st.error("Los modelos NLP no están inicializados. Por favor, reinicie la aplicación.") + return + + lang_code = st.session_state.get('lang_code', 'es') + t = get_translations(lang_code) + + logger.info(f"Página actual antes de la lógica de enrutamiento: {st.session_state.page}") + + if st.session_state.get('logged_out', False): + st.session_state.logged_out = False + st.session_state.page = 'login' + st.rerun() + + if not st.session_state.get('logged_in', False): + logger.info("Usuario no ha iniciado sesión. Mostrando página de login/registro") + login_register_page(lang_code, t) + elif st.session_state.page == 'user': + if st.session_state.role == 'Administrador': + logger.info("Redirigiendo a la página de administrador") + st.session_state.page = 'Admin' + st.rerun() + else: + logger.info("Renderizando página de usuario") + user_page(lang_code, t) + elif st.session_state.page == "Admin": + logger.info("Renderizando página de administrador") + admin_page() + else: + logger.error(f"Página no reconocida: {st.session_state.page}") + st.error(t.get('unrecognized_page', 'Página no reconocida')) + # Redirigir a la página de usuario en caso de error + st.session_state.page = 'user' + st.rerun() + + logger.info(f"Saliendo de main() - Estado final de la sesión: {st.session_state}") + +############################################################# +############################################################# +def login_register_page(lang_code, t): + # Obtener traducciones específicas para landing page + landing_t = get_landing_translations(lang_code) + + # Language selection dropdown at the top + languages = {'Español': 'es', 'English': 'en', 'Français': 'fr', 'Português': 'pt'} + + # Estilo personalizado para mejorar el espaciado y alineación + st.markdown(""" + + """, unsafe_allow_html=True) + + # Crear contenedor para logos y selector de idioma usando columnas de Streamlit + col1, col2, col3, col4, col5 = st.columns([0.25, 0.25, 1, 1, 1]) + + with col1: + # Logo de ALPHA + st.image("https://huggingface.co/spaces/AIdeaText/v3/resolve/main/assets/img/ALPHA_Startup%20Badges.png", width=100) + + with col2: + # Logo de AIdeaText + st.image("https://huggingface.co/spaces/AIdeaText/v3/resolve/main/assets/img/AIdeaText_Logo_vectores.png", width=100) + + with col5: + # Selector de idioma + selected_lang = st.selectbox( + landing_t['select_language'], + list(languages.keys()), + index=list(languages.values()).index(lang_code), + key=f"landing_language_selector_{lang_code}" + ) + new_lang_code = languages[selected_lang] + if lang_code != new_lang_code: + st.session_state.lang_code = new_lang_code + st.rerun() + + # Main content with columns + left_column, right_column = st.columns([1, 3]) + + with left_column: + tab1, tab2 = st.tabs([landing_t['login'], landing_t['register']]) + + with tab1: + login_form(lang_code, landing_t) + + with tab2: + register_form(lang_code, landing_t) + + with right_column: + display_videos_and_info(lang_code, landing_t) + +############################################################# +############################################################# +def login_form(lang_code, landing_t): + with st.form("login_form"): + username = st.text_input(landing_t['email']) + password = st.text_input(landing_t['password'], type="password") + submit_button = st.form_submit_button(landing_t['login_button']) + + if submit_button: + success, role = authenticate_user(username, password) + if success: + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = role + if role == 'Administrador': + st.session_state.page = 'Admin' + else: + st.session_state.page = 'user' + logger.info(f"Usuario autenticado: {username}, Rol: {role}") + st.rerun() + else: + st.error(landing_t['invalid_credentials']) + + +############################################################# +############################################################# +def register_form(lang_code, landing_t): + name = st.text_input(landing_t['name']) + lastname = st.text_input(landing_t['lastname']) + institution = st.text_input(landing_t['institution']) + current_role = st.selectbox(landing_t['current_role'], + [landing_t['professor'], landing_t['student'], landing_t['administrative']]) + + # Definimos el rol por defecto como estudiante + desired_role = landing_t['student'] + + email = st.text_input(landing_t['institutional_email']) + reason = st.text_area(landing_t['interest_reason']) + + if st.button(landing_t['submit_application']): + logger.info(f"Intentando enviar solicitud para {email}") + logger.debug(f"Datos del formulario: name={name}, lastname={lastname}, email={email}, institution={institution}, current_role={current_role}, desired_role={desired_role}, reason={reason}") + + if not name or not lastname or not email or not institution or not reason: + logger.warning("Envío de formulario incompleto") + st.error(landing_t['complete_all_fields']) + elif not is_institutional_email(email): + logger.warning(f"Email no institucional utilizado: {email}") + st.error(landing_t['use_institutional_email']) + else: + logger.info(f"Intentando almacenar solicitud para {email}") + success = store_application_request(name, lastname, email, institution, current_role, desired_role, reason) + if success: + st.success(landing_t['application_sent']) + logger.info(f"Solicitud almacenada exitosamente para {email}") + else: + st.error(landing_t['application_error']) + logger.error(f"Error al almacenar solicitud para {email}") + + +############################################################# +############################################################# +def is_institutional_email(email): + forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] + return not any(domain in email.lower() for domain in forbidden_domains) + + +############################################################# +############################################################# +def display_videos_and_info(lang_code, landing_t): + # Crear tabs para cada sección + tab_use_case, tab_videos, tab_events, tab_gallery, tab_news = st.tabs([ + landing_t['use_cases'], + landing_t['presentation_videos'], + landing_t['academic_presentations'], + landing_t['event_photos'], + landing_t['version_control'] + ]) + + # Tab de Casos de uso + with tab_use_case: + use_case_videos = { + "English - Radar use chart": "https://youtu.be/fFbbtlIewgs", + "English - Use AI Bot and arcs charts fuctions": "https://youtu.be/XjM-1oOl-ao", + "English - Arcs use charts, example 1": "https://youtu.be/PdK_bgigVaM", + "English - Arcs use charts, excample 2": "https://youtu.be/7uaV1njPOng", + "Español - Uso del diagrama radar para verificar redacción": "https://www.youtube.com/watch?v=nJP6xscPLBU", + "Español - Uso de los diagramas de arco, ejemplo 1": "https://www.youtube.com/watch?v=ApBIAr2S-bE", + "Español - Uso de los diagramas de arco, ejemplo 2": "https://www.youtube.com/watch?v=JnP2U1Fm0rc", + "Español - Uso de los diagramas de arco, ejemplo 3": "https://www.youtube.com/watch?v=waWWwPTaI-Y", + "Español - Uso del bot para buscar respuestas" : "https://www.youtube.com/watch?v=GFKDS0K2s7E" + } + + selected_title = st.selectbox(landing_t['select_use_case'], list(use_case_videos.keys())) + if selected_title in use_case_videos: + try: + st_player(use_case_videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + # Tab de Videos + with tab_videos: + videos = { + "Reel AIdeaText": "https://youtu.be/hXnwUvN1Q9Q", + "Presentación en SENDA, UNAM. Ciudad de México, México" : "https://www.youtube.com/watch?v=XFLvjST2cE0", + "Presentación en PyCon 2024. Colombia, Medellín": "https://www.youtube.com/watch?v=Jn545-IKx5Q", + "Presentación en la Fundación Ser Maaestro. Lima, Perú": "https://www.youtube.com/watch?v=imc4TI1q164", + "Presentación en el programa de incubación Explora del IFE, TEC de Monterrey, Nuevo León, México": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", + "Entrevista con el Dr. Guillermo Ruíz. Lima, Perú": "https://www.youtube.com/watch?v=_ch8cRja3oc", + "Demo de la versión de escritorio.": "https://www.youtube.com/watch?v=nP6eXbog-ZY" + } + + selected_title = st.selectbox(landing_t['select_presentation'], list(videos.keys())) + if selected_title in videos: + try: + st_player(videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + # Tab de Eventos + with tab_events: + st.markdown(""" + ## 2025 + + **El Agente Cognitivo Vinculante como Innovación en el Aprendizaje Adaptativo: el caso de AIdeaText** + IFE CONFERENCE 2025. Organizado por el Instituto para el Futuro de la Educación del TEC de Monterrey. + Nuevo León, México. Del 28 al 30 enero 2025 + + ## 2024 + [1] + AIdeaText, AIdeaText, recurso digital que emplea la técnica de Análisis de Resonancia Central para perfeccionar textos académicos** + V Temporada SENDA - Organizado por el Seminario de Entornos y Narrativas Digitales en la Academia del + Instituto de Investigaciones Antropológicas (IIA) de la Universidad Autonóma de México (UNAM). 22 noviembre 2024 + + [2] + Aproximación al Agente Cognitivo Vinculante (ACV) desde la Teoría del Actor Red (TAR)** + Congreso HeETI 2024: Horizontes Expandidos de la Educación, la Tecnología y la Innovación + Universidad el Claustro de Sor Juana. Del 25 al 27 septiembre 2024 + + [3] + AIdeaText, visualización de mapas semánticos** + PyCon 2024, Organizado por el grupo de desarrolladores independientes de Python. + Universidad EAFIT, Medellín, Colombia. Del 7 al 9 de junio de 2024. + + ## 2023 + **Aproximación al Agente Cognitivo Vinculante (ACV) desde la Teoría del Actor Red (TAR)** + [1] + XVII Congreso Nacional de Investigación Educativa - VII Encuentro de Estudiantes de Posgrado Educación. + Consejo Mexicano de Investigación Educativa (COMIE) + Villahermosa, Tabasco, México. + Del 4 al 8 de diciembre 2023 + + [2] + XXXI Encuentro Internacional de Educación a Distancia + Universidad de Guadalajara. Jalisco, México. + Del 27 al 30 noviembre 2023 + + [3] + IV Temporada SENDA - Seminario de Entornos y Narrativas Digitales en la Academia + Instituto de Investigaciones Antropológicas (IIA), UNAM. + 22 noviembre 2023 + + [4] + 1er Congreso Internacional de Educación Digital + Instituto Politécnico Nacional, sede Zacatecas. México. + Del 23 al 24 de noviembre de 2023 + + [5] + La cuestión de la centralidad del maestro frente a las tecnologías digitales generativas** + Innova Fórum: Ecosistemas de Aprendizaje + Universidad de Guadalajara. Jalisco, México. + Del 16 al 18 de mayo 2023 + """) + + # Tab de Galería + with tab_gallery: + # Contenedor con ancho máximo + with st.container(): + # Dividimos en dos columnas principales + col_left, col_right = st.columns(2) + + # Columna izquierda: Foto 1 grande + with col_left: + # Foto 2 arriba + st.image("assets/img/socialmedia/_MG_2845.JPG", + caption="MakerFaire CDMX 2024", + width=480) # Ajusta este valor según necesites + # use_column_width=True) + + # Foto 3 abajo + st.image("assets/img/socialmedia/Facebook_CoverPhoto-1_820x312.jpg", + caption="MakerFaire CDMX 2024", + width=480) # Ajusta este valor según necesites + # use_column_width=True) + + # Columna derecha: Fotos 2 y 3 una encima de otra + with col_right: + st.image("assets/img/socialmedia/_MG_2790.jpg", + caption="MakerFaire CDMX 2024", + width=540) # Ajusta este valor según necesites + + + # Tab de Novedades - Usar contenido traducido + with tab_news: + st.markdown(f"### {landing_t['latest_version_title']}") + for update in landing_t['version_updates']: + st.markdown(f"- {update}") + +# Definición de __all__ para especificar qué se exporta +__all__ = ['main', 'login_register_page', 'initialize_session_state'] + +# Bloque de ejecución condicional +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/modules/ui/ui_BackUp-19-9-2024.py b/modules/ui/ui_BackUp-19-9-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..1a8e1fb7c1daf723d04cbd2ca1fa301b4dd78091 --- /dev/null +++ b/modules/ui/ui_BackUp-19-9-2024.py @@ -0,0 +1,1160 @@ +# Importaciones generales +import sys +import streamlit as st +import re +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import pandas as pd +import numpy as np +import time +from datetime import datetime +from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player +from spacy import displacy +import logging +import random + +###################################################### +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + + +###################################################### +#imporraciones locales de traducción +from translations import get_translations + +###################################################### +# Importaciones locales +from ..email.email import send_email_notification + +###################################################### +# Importaciones locales de autenticación y base de datos +from ..auth.auth import ( + authenticate_user, + register_user +) + +###################################################### +from ..database.database_oldFromV2 import ( + create_admin_user, + create_student_user, + get_user, + get_student_data, + store_file_contents, #gestión archivos + retrieve_file_contents, #gestión archivos + get_user_files, #gestión archivos + delete_file, # #gestión archivos + store_application_request, # form + store_user_feedback, # form + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + export_analysis_and_chat +) + +###################################################### +# Importaciones locales de uiadmin +from ..admin.admin_ui import admin_page + +###################################################### +# Importaciones locales funciones de análisis +from ..text_analysis.morpho_analysis import ( + generate_arc_diagram, + get_repeated_words_colors, + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS, + perform_advanced_morphosyntactic_analysis +) + +###################################################### +from ..text_analysis.semantic_analysis import ( + #visualize_semantic_relations, + perform_semantic_analysis, + create_concept_graph, + visualize_concept_graph +) + +###################################################### +from ..text_analysis.discourse_analysis import ( + perform_discourse_analysis, + display_discourse_analysis_results +) + +###################################################### +from ..chatbot.chatbot import ( + initialize_chatbot, + process_morphosyntactic_input, + process_semantic_input, + process_discourse_input, + process_chat_input, + get_connectors, + #handle_semantic_commands, + generate_topics_visualization, + extract_topics, + get_semantic_chatbot_response +) + +#####################-- Funciones de inicialización y configuración--- ############################################################################## +def initialize_session_state(): + if 'initialized' not in st.session_state: + st.session_state.clear() + st.session_state.initialized = True + st.session_state.logged_in = False + st.session_state.page = 'login' + st.session_state.username = None + st.session_state.role = None + +def main(): + initialize_session_state() + + print(f"Página actual: {st.session_state.page}") + print(f"Rol del usuario: {st.session_state.role}") + + if st.session_state.page == 'login': + login_register_page() + elif st.session_state.page == 'admin': + print("Intentando mostrar página de admin") + admin_page() + elif st.session_state.page == 'user': + user_page() + else: + print(f"Página no reconocida: {st.session_state.page}") + + print(f"Estado final de la sesión: {st.session_state}") + +#############################--- # Funciones de autenticación y registro --- ##################################################################### +def login_register_page(): + st.title("AIdeaText") + + left_column, right_column = st.columns([1, 3]) + + with left_column: + tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"]) + + with tab1: + login_form() + + with tab2: + register_form() + + with right_column: + display_videos_and_info() + +def login_form(): + with st.form("login_form"): + username = st.text_input("Correo electrónico") + password = st.text_input("Contraseña", type="password") + submit_button = st.form_submit_button("Iniciar Sesión") + + if submit_button: + success, role = authenticate_user(username, password) + if success: + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = role + st.session_state.page = 'admin' if role == 'Administrador' else 'user' + st.rerun() + else: + st.error("Credenciales incorrectas") + +def register_form(): + st.header("Solicitar prueba de la aplicación") + + name = st.text_input("Nombre completo") + email = st.text_input("Correo electrónico institucional") + institution = st.text_input("Institución") + role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"]) + reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?") + + if st.button("Enviar solicitud"): + logger.info(f"Attempting to submit application for {email}") + logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}") + + if not name or not email or not institution or not reason: + logger.warning("Incomplete form submission") + st.error("Por favor, completa todos los campos.") + elif not is_institutional_email(email): + logger.warning(f"Non-institutional email used: {email}") + st.error("Por favor, utiliza un correo electrónico institucional.") + else: + logger.info(f"Attempting to store application for {email}") + success = store_application_request(name, email, institution, role, reason) + if success: + st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.") + logger.info(f"Application request stored successfully for {email}") + else: + st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.") + logger.error(f"Failed to store application request for {email}") + +def is_institutional_email(email): + forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] + return not any(domain in email.lower() for domain in forbidden_domains) + +###########################################--- Funciones de interfaz general --- ###################################################### + +def user_page(): + # Asumimos que el idioma seleccionado está almacenado en st.session_state.lang_code + # Si no está definido, usamos 'es' como valor predeterminado + t = get_translations(lang_code) + + st.title(t['welcome']) + st.write(f"{t['hello']}, {st.session_state.username}") + + # Dividir la pantalla en dos columnas + col1, col2 = st.columns(2) + + with col1: + st.subheader(t['chat_title']) + display_chatbot_interface(lang_code) + + with col2: + st.subheader(t['results_title']) + if 'current_analysis' in st.session_state and st.session_state.current_analysis is not None: + display_analysis_results(st.session_state.current_analysis, lang_code) + if st.button(t['export_button']): + if export_analysis_and_chat(st.session_state.username, st.session_state.current_analysis, st.session_state.messages): + st.success(t['export_success']) + else: + st.error(t['export_error']) + else: + st.info(t['no_analysis']) + +def admin_page(): + st.title("Panel de Administración") + st.write(f"Bienvenida, {st.session_state.username}") + + st.header("Crear Nuevo Usuario Estudiante") + new_username = st.text_input("Correo electrónico del nuevo usuario", key="admin_new_username") + new_password = st.text_input("Contraseña", type="password", key="admin_new_password") + if st.button("Crear Usuario", key="admin_create_user"): + if create_student_user(new_username, new_password): + st.success(f"Usuario estudiante {new_username} creado exitosamente") + else: + st.error("Error al crear el usuario estudiante") + + # Aquí puedes añadir más funcionalidades para el panel de administración + +def display_videos_and_info(): + st.header("Videos: pitch, demos, entrevistas, otros") + + videos = { + "Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q", + "Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164", + "Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", + "Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc", + "Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY" + } + + selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys())) + + if selected_title in videos: + try: + st_player(videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + st.markdown(""" + ## Novedades de la versión actual + - Nueva función de análisis semántico + - Soporte para múltiples idiomas + - Interfaz mejorada para una mejor experiencia de usuario + """) + +def display_feedback_form(lang_code, t): + logging.info(f"display_feedback_form called with lang_code: {lang_code}") + + st.header(t['title']) + + name = st.text_input(t['name'], key=f"feedback_name_{lang_code}") + email = st.text_input(t['email'], key=f"feedback_email_{lang_code}") + feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}") + + if st.button(t['submit'], key=f"feedback_submit_{lang_code}"): + if name and email and feedback: + if store_user_feedback(st.session_state.username, name, email, feedback): + st.success(t['success']) + else: + st.error(t['error']) + else: + st.warning("Por favor, completa todos los campos.") + +def display_student_progress(username, lang_code, t): + student_data = get_student_data(username) + + if student_data is None or len(student_data['entries']) == 0: + st.warning("No se encontraron datos para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + st.title(f"Progreso de {username}") + + with st.expander("Resumen de Actividades y Progreso", expanded=True): + # Resumen de actividades + total_entries = len(student_data['entries']) + st.write(f"Total de análisis realizados: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title("Tipos de análisis realizados") + ax.set_xlabel("Tipo de análisis") + ax.set_ylabel("Cantidad") + st.pyplot(fig) + + # Progreso a lo largo del tiempo + dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']] + analysis_counts = pd.Series(dates).value_counts().sort_index() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='line', ax=ax) + ax.set_title("Análisis realizados a lo largo del tiempo") + ax.set_xlabel("Fecha") + ax.set_ylabel("Cantidad de análisis") + st.pyplot(fig) + +########################################################## + with st.expander("Histórico de Análisis Morfosintácticos"): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for entry in morphosyntax_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + if entry['arc_diagrams']: + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + + + ########################################################## + with st.expander("Histórico de Análisis Semánticos"): + semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + for entry in semantic_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave + if 'key_concepts' in entry: + st.write("Conceptos clave:") + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) + #st.write("Conceptos clave:") + #st.write(concepts_str) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +#####################--- Funciones de manejo de archivos --- ############################################################################# + +def handle_file_upload(username, lang_code, nlp_models, t, analysis_type): + get_text = get_text if callable(get_text) else lambda key, section, default: t.get(key, default) + st.subheader(get_text('file_upload_section', analysis_type.upper(), 'File Upload')) + + uploaded_file = st.file_uploader( + get_text('file_uploader', analysis_type.upper(), 'Upload a file'), + type=['txt', 'pdf', 'docx', 'doc', 'odt'] + ) + + if uploaded_file is not None: + file_contents = read_file_contents(uploaded_file) + + if store_file_contents(username, uploaded_file.name, file_contents, analysis_type): + st.success(get_text('file_upload_success', analysis_type.upper(), 'File uploaded successfully')) + return file_contents, uploaded_file.name + else: + st.error(get_text('file_upload_error', analysis_type.upper(), 'Error uploading file')) + + return None, None + +def read_file_contents(uploaded_file): + # Implementar la lógica para leer diferentes tipos de archivos + # Por ahora, asumimos que es un archivo de texto + return uploaded_file.getvalue().decode('utf-8') + +######################--- Funciones generales de análisis ---######################################################## +def display_analysis_results(analysis, lang_code, t): + if analysis is None: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + return + + if not isinstance(analysis, dict): + st.error(f"Error: El resultado del análisis no es un diccionario. Tipo actual: {type(analysis)}") + return + + if 'type' not in analysis: + st.error("Error: El resultado del análisis no contiene la clave 'type'") + st.write("Claves presentes en el resultado:", list(analysis.keys())) + return + + if analysis['type'] == 'morphosyntactic': + st.subheader(t.get('morphosyntactic_title', "Análisis Morfosintáctico")) + display_morphosyntax_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'semantic': + st.subheader(t.get('semantic_title', "Análisis Semántico")) + display_semantic_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'discourse': + st.subheader(t.get('discourse_title', "Análisis del Discurso")) + display_discourse_results(analysis['result'], lang_code, t) + else: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + + # Mostrar el contenido completo del análisis para depuración + st.write("Contenido completo del análisis:", analysis) + +def handle_user_input(user_input, lang_code, nlp_models, analysis_type, file_contents=None): + response = process_chat_input(user_input, lang_code, nlp_models, analysis_type, file_contents, t) + # Procesa la respuesta y actualiza la interfaz de usuario + + +###################################--- Funciones específicas de análisis morfosintáctico ---################################################################ + +def display_morphosyntax_analysis_interface(user_input, nlp_models, lang_code, t): + get_text = get_text if callable(get_text) else lambda key, section, default: t.get(key, default) + logging.info(f"Displaying morphosyntax analysis interface. Language code: {lang_code}") + + # Inicializar el historial del chat si no existe + if 'morphosyntax_chat_history' not in st.session_state: + initial_message = get_text('initial_message', 'MORPHOSYNTACTIC', + "Este es un chatbot para análisis morfosintáctico. Para generar un diagrama de arco, " + "use el comando /analisis_morfosintactico seguido del texto entre corchetes.") + st.session_state.morphosyntax_chat_history = [{"role": "assistant", "content": initial_message}] + + # Contenedor para el chat + chat_container = st.container() + + # Mostrar el historial del chat + with chat_container: + for message in st.session_state.morphosyntax_chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualization" in message: + st.components.v1.html(message["visualization"], height=450, scrolling=True) + + # Input del usuario + user_input = st.chat_input(get_text('chat_placeholder', 'MORPHOSYNTACTIC', + "Ingrese su mensaje o use /analisis_morfosintactico [texto] para analizar")) + + if user_input: + # Añadir el mensaje del usuario al historial + st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) + + # Procesar el input del usuario + if user_input.startswith('/analisis_morfosintactico'): + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + try: + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + + # Guardar el resultado en el estado de la sesión + st.session_state.current_analysis = { + 'type': 'morphosyntactic', + 'result': result + } + + # Añadir el resultado al historial del chat + response = get_text('analysis_completed', 'MORPHOSYNTACTIC', 'Análisis morfosintáctico completado.') + st.session_state.morphosyntax_chat_history.append({ + "role": "assistant", + "content": response, + "visualization": result['arc_diagram'][0] if result['arc_diagram'] else None + }) + + # Guardar resultados en la base de datos + if store_morphosyntax_result( + st.session_state.username, + text_to_analyze, + get_repeated_words_colors(nlp_models[lang_code](text_to_analyze)), + result['arc_diagram'], + result['pos_analysis'], + result['morphological_analysis'], + result['sentence_structure'] + ): + st.success(get_text('success_message', 'MORPHOSYNTACTIC', 'Análisis guardado correctamente.')) + else: + st.error(get_text('error_message', 'MORPHOSYNTACTIC', 'Hubo un problema al guardar el análisis.')) + + except Exception as e: + error_message = get_text('analysis_error', 'MORPHOSYNTACTIC', f'Ocurrió un error durante el análisis: {str(e)}') + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": error_message}) + logging.error(f"Error in morphosyntactic analysis: {str(e)}") + else: + # Aquí puedes procesar otros tipos de inputs del usuario si es necesario + response = get_text('command_not_recognized', 'MORPHOSYNTACTIC', + "Comando no reconocido. Use /analisis_morfosintactico [texto] para realizar un análisis.") + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": response}) + + # Forzar la actualización de la interfaz + st.rerun() + + logging.info("Morphosyntax analysis interface displayed successfully") + + +################################################################################################# +def display_morphosyntax_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Añade esta traducción a tu diccionario + return + + # doc = result['doc'] + # advanced_analysis = result['advanced_analysis'] + advanced_analysis = result + + # Mostrar leyenda (código existente) + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + if 'repeated_words' in advanced_analysis: + with st.expander(t['repeated_words'], expanded=True): + st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) + + # Mostrar estructura de oraciones + if 'sentence_structure' in advanced_analysis: + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + else: + st.warning("No se encontró información sobre la estructura de las oraciones.") + + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + #with st.expander(t['arc_diagram'], expanded=True): + # sentences = list(doc.sents) + # arc_diagrams = [] + # for i, sent in enumerate(sentences): + # st.subheader(f"{t['sentence']} {i+1}") + # html = displacy.render(sent, style="dep", options={"distance": 100}) + # html = html.replace('height="375"', 'height="200"') + # html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + # html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'{concepts_str}", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +#####################--- Funciones de manejo de archivos --- ############################################################################# + +def handle_file_upload(username, lang_code, nlp_models, t, analysis_type): + st.subheader(t['get_text']('file_upload_section', analysis_type.upper(), 'File Upload')) + + uploaded_file = st.file_uploader( + t['get_text']('file_uploader', analysis_type.upper(), 'Upload a file'), + type=['txt', 'pdf', 'docx', 'doc', 'odt'] + ) + + if uploaded_file is not None: + file_contents = read_file_contents(uploaded_file) + + if store_file_contents(username, uploaded_file.name, file_contents, analysis_type): + st.success(t['get_text']('file_upload_success', analysis_type.upper(), 'File uploaded successfully')) + return file_contents, uploaded_file.name + else: + st.error(t['get_text']('file_upload_error', analysis_type.upper(), 'Error uploading file')) + + return None, None + +def read_file_contents(uploaded_file): + # Implementar la lógica para leer diferentes tipos de archivos + # Por ahora, asumimos que es un archivo de texto + return uploaded_file.getvalue().decode('utf-8') + +######################--- Funciones generales de análisis ---######################################################## +def display_analysis_results(analysis, lang_code, t): + if analysis is None: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + return + + if not isinstance(analysis, dict): + st.error(f"Error: El resultado del análisis no es un diccionario. Tipo actual: {type(analysis)}") + return + + if 'type' not in analysis: + st.error("Error: El resultado del análisis no contiene la clave 'type'") + st.write("Claves presentes en el resultado:", list(analysis.keys())) + return + + if analysis['type'] == 'morphosyntactic': + st.subheader(t.get('morphosyntactic_title', "Análisis Morfosintáctico")) + display_morphosyntax_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'semantic': + st.subheader(t.get('semantic_title', "Análisis Semántico")) + display_semantic_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'discourse': + st.subheader(t.get('discourse_title', "Análisis del Discurso")) + display_discourse_results(analysis['result'], lang_code, t) + else: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + + # Mostrar el contenido completo del análisis para depuración + st.write("Contenido completo del análisis:", analysis) + +def handle_user_input(user_input, lang_code, nlp_models, analysis_type, file_contents=None): + response = process_chat_input(user_input, lang_code, nlp_models, analysis_type, file_contents, t) + # Procesa la respuesta y actualiza la interfaz de usuario + + +###################################--- Funciones específicas de análisis morfosintáctico ---################################################################ + +def display_morphosyntax_analysis_interface(user_input, nlp_models, lang_code, t): + logging.info(f"Displaying morphosyntax analysis interface. Language code: {lang_code}") + + # Inicializar el historial del chat si no existe + if 'morphosyntax_chat_history' not in st.session_state: + initial_message = t['get_text']('initial_message', 'MORPHOSYNTACTIC', + "Este es un chatbot para análisis morfosintáctico. Para generar un diagrama de arco, " + "use el comando /analisis_morfosintactico seguido del texto entre corchetes.") + st.session_state.morphosyntax_chat_history = [{"role": "assistant", "content": initial_message}] + + # Contenedor para el chat + chat_container = st.container() + + # Mostrar el historial del chat + with chat_container: + for message in st.session_state.morphosyntax_chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualization" in message: + st.components.v1.html(message["visualization"], height=450, scrolling=True) + + # Input del usuario + user_input = st.chat_input(t['get_text']('chat_placeholder', 'MORPHOSYNTACTIC', + "Ingrese su mensaje o use /analisis_morfosintactico [texto] para analizar")) + + if user_input: + # Añadir el mensaje del usuario al historial + st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) + + # Procesar el input del usuario + if user_input.startswith('/analisis_morfosintactico'): + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + try: + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + + # Guardar el resultado en el estado de la sesión + st.session_state.current_analysis = { + 'type': 'morphosyntactic', + 'result': result + } + + # Añadir el resultado al historial del chat + response = t['get_text']('analysis_completed', 'MORPHOSYNTACTIC', 'Análisis morfosintáctico completado.') + st.session_state.morphosyntax_chat_history.append({ + "role": "assistant", + "content": response, + "visualization": result['arc_diagram'][0] if result['arc_diagram'] else None + }) + + # Guardar resultados en la base de datos + if store_morphosyntax_result( + st.session_state.username, + text_to_analyze, + get_repeated_words_colors(nlp_models[lang_code](text_to_analyze)), + result['arc_diagram'], + result['pos_analysis'], + result['morphological_analysis'], + result['sentence_structure'] + ): + st.success(t['get_text']('success_message', 'MORPHOSYNTACTIC', 'Análisis guardado correctamente.')) + else: + st.error(t['get_text']('error_message', 'MORPHOSYNTACTIC', 'Hubo un problema al guardar el análisis.')) + + except Exception as e: + error_message = t['get_text']('analysis_error', 'MORPHOSYNTACTIC', f'Ocurrió un error durante el análisis: {str(e)}') + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": error_message}) + logging.error(f"Error in morphosyntactic analysis: {str(e)}") + else: + # Aquí puedes procesar otros tipos de inputs del usuario si es necesario + response = t['get_text']('command_not_recognized', 'MORPHOSYNTACTIC', + "Comando no reconocido. Use /analisis_morfosintactico [texto] para realizar un análisis.") + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": response}) + + # Forzar la actualización de la interfaz + st.experimental_rerun() + + logging.info("Morphosyntax analysis interface displayed successfully") + + +################################################################################################# +def display_morphosyntax_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Añade esta traducción a tu diccionario + return + + # doc = result['doc'] + # advanced_analysis = result['advanced_analysis'] + advanced_analysis = result + + # Mostrar leyenda (código existente) + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + if 'repeated_words' in advanced_analysis: + with st.expander(t['repeated_words'], expanded=True): + st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) + + # Mostrar estructura de oraciones + if 'sentence_structure' in advanced_analysis: + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + else: + st.warning("No se encontró información sobre la estructura de las oraciones.") + + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + #with st.expander(t['arc_diagram'], expanded=True): + # sentences = list(doc.sents) + # arc_diagrams = [] + # for i, sent in enumerate(sentences): + # st.subheader(f"{t['sentence']} {i+1}") + # html = displacy.render(sent, style="dep", options={"distance": 100}) + # html = html.replace('height="375"', 'height="200"') + # html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + # html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'{concepts_str}", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +################################################################################################## +def display_morphosyntax_analysis_interface(nlp_models, lang_code): + translations = { + 'es': { + 'title': "AIdeaText - Análisis morfológico y sintáctico", + 'input_label': "Ingrese un texto para analizar (máximo 5,000 palabras", + 'input_placeholder': "Esta funcionalidad le ayudará con dos competencias:\n" + "[1] \"Escribe diversos tipos de textos en su lengua materna\"\n" + "[2] \"Lee diversos tipos de textos escritos en su lengua materna\"\n\n" + "Ingrese su texto aquí para analizar...", + 'analyze_button': "Analizar texto", + 'repeated_words': "Palabras repetidas", + 'legend': "Leyenda: Categorías gramaticales", + 'arc_diagram': "Análisis sintáctico: Diagrama de arco", + 'sentence': "Oración", + 'success_message': "Análisis guardado correctamente.", + 'error_message': "Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.", + 'warning_message': "Por favor, ingrese un texto para analizar.", + 'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.", + 'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.", + 'pos_analysis': "Análisis de categorías gramaticales", + 'morphological_analysis': "Análisis morfológico", + 'sentence_structure': "Estructura de oraciones", + 'word': "Palabra", + 'count': "Cantidad", + 'percentage': "Porcentaje", + 'examples': "Ejemplos", + 'lemma': "Lema", + 'tag': "Etiqueta", + 'dep': "Dependencia", + 'morph': "Morfología", + 'root': "Raíz", + 'subjects': "Sujetos", + 'objects': "Objetos", + 'verbs': "Verbos", + 'grammatical_category': "Categoría gramatical", + 'dependency': "Dependencia", + 'morphology': "Morfología" + }, + 'en': { + 'title': "AIdeaText - Morphological and Syntactic Analysis", + 'input_label': "Enter a text to analyze (max 5,000 words):", + 'input_placeholder': "This functionality will help you with two competencies:\n" + "[1] \"Write various types of texts in your native language\"\n" + "[2] \"Read various types of written texts in your native language\"\n\n" + "Enter your text here to analyze...", + 'analyze_button': "Analyze text", + 'repeated_words': "Repeated words", + 'legend': "Legend: Grammatical categories", + 'arc_diagram': "Syntactic analysis: Arc diagram", + 'sentence': "Sentence", + 'success_message': "Analysis saved successfully.", + 'error_message': "There was a problem saving the analysis. Please try again.", + 'warning_message': "Please enter a text to analyze.", + 'initial_message': "Enter a text and press 'Analyze text' to start.", + 'no_results': "No results available. Please perform an analysis first.", + 'pos_analysis': "Part of Speech Analysis", + 'morphological_analysis': "Morphological Analysis", + 'sentence_structure': "Sentence Structure", + 'word': "Word", + 'count': "Count", + 'percentage': "Percentage", + 'examples': "Examples", + 'lemma': "Lemma", + 'tag': "Tag", + 'dep': "Dependency", + 'morph': "Morphology", + 'root': "Root", + 'subjects': "Subjects", + 'objects': "Objects", + 'verbs': "Verbs", + 'grammatical_category': "Grammatical category", + 'dependency': "Dependency", + 'morphology': "Morphology" + }, + 'fr': { + 'title': "AIdeaText - Analyse morphologique et syntaxique", + 'input_label': "Entrez un texte à analyser (max 5 000 mots) :", + 'input_placeholder': "Cette fonctionnalité vous aidera avec deux compétences :\n" + "[1] \"Écrire divers types de textes dans votre langue maternelle\"\n" + "[2] \"Lire divers types de textes écrits dans votre langue maternelle\"\n\n" + "Entrez votre texte ici pour l'analyser...", + 'analyze_button': "Analyser le texte", + 'repeated_words': "Mots répétés", + 'legend': "Légende : Catégories grammaticales", + 'arc_diagram': "Analyse syntaxique : Diagramme en arc", + 'sentence': "Phrase", + 'success_message': "Analyse enregistrée avec succès.", + 'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse. Veuillez réessayer.", + 'warning_message': "Veuillez entrer un texte à analyser.", + 'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.", + 'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.", + 'pos_analysis': "Analyse des parties du discours", + 'morphological_analysis': "Analyse morphologique", + 'sentence_structure': "Structure des phrases", + 'word': "Mot", + 'count': "Nombre", + 'percentage': "Pourcentage", + 'examples': "Exemples", + 'lemma': "Lemme", + 'tag': "Étiquette", + 'dep': "Dépendance", + 'morph': "Morphologie", + 'root': "Racine", + 'subjects': "Sujets", + 'objects': "Objets", + 'verbs': "Verbes", + 'grammatical_category': "Catégorie grammaticale", + 'dependency': "Dépendance", + 'morphology': "Morphologie" + } + } + + t = translations[lang_code] + + input_key = f"morphosyntax_input_{lang_code}" + + if input_key not in st.session_state: + st.session_state[input_key] = "" + + sentence_input = st.text_area( + t['input_label'], + height=150, + placeholder=t['input_placeholder'], + value=st.session_state[input_key], + key=f"text_area_{lang_code}", + on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"]) + ) + + if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"): + current_input = st.session_state[input_key] + if current_input: + doc = nlp_models[lang_code](current_input) + + # Análisis morfosintáctico avanzado + advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code]) + + # Guardar el resultado en el estado de la sesión + st.session_state.morphosyntax_result = { + 'doc': doc, + 'advanced_analysis': advanced_analysis + } + + # Mostrar resultados + display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t) + + # Guardar resultados + if store_morphosyntax_result( + st.session_state.username, + current_input, + get_repeated_words_colors(doc), + advanced_analysis['arc_diagram'], + advanced_analysis['pos_analysis'], + advanced_analysis['morphological_analysis'], + advanced_analysis['sentence_structure'] + ): + st.success(t['success_message']) + else: + st.error(t['error_message']) + else: + st.warning(t['warning_message']) + elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: + + # Si hay un resultado guardado, mostrarlo + display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t) + else: + st.info(t['initial_message']) # Añade esta traducción a tu diccionario + +################################################################################################# +################################################################################################# +def display_morphosyntax_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Añade esta traducción a tu diccionario + return + + # doc = result['doc'] + # advanced_analysis = result['advanced_analysis'] + advanced_analysis = result + + # Mostrar leyenda (código existente) + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + if 'repeated_words' in advanced_analysis: + with st.expander(t['repeated_words'], expanded=True): + st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) + + # Mostrar estructura de oraciones + if 'sentence_structure' in advanced_analysis: + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + else: + st.warning("No se encontró información sobre la estructura de las oraciones.") + + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + #with st.expander(t['arc_diagram'], expanded=True): + # sentences = list(doc.sents) + # arc_diagrams = [] + # for i, sent in enumerate(sentences): + # st.subheader(f"{t['sentence']} {i+1}") + # html = displacy.render(sent, style="dep", options={"distance": 100}) + # html = html.replace('height="375"', 'height="200"') + # html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + # html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'{POS_TRANSLATIONS[lang_code][pos]}" + legend_html += "" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + word_colors = get_repeated_words_colors(doc) + with st.expander(t['repeated_words'], expanded=True): + highlighted_text = highlight_repeated_words(doc, word_colors) + st.markdown(highlighted_text, unsafe_allow_html=True) + + # Mostrar estructura de oraciones + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + with st.expander(t['arc_diagram'], expanded=True): + sentences = list(doc.sents) + arc_diagrams = [] + for i, sent in enumerate(sentences): + st.subheader(f"{t['sentence']} {i+1}") + html = displacy.render(sent, style="dep", options={"distance": 100}) + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'window.scrollTo(0,document.body.scrollHeight);', unsafe_allow_html=True) + +###################################################### +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/modules/ui/user_page.py b/modules/ui/user_page.py new file mode 100644 index 0000000000000000000000000000000000000000..9d53a32656949cfca85b578e98dd46814100a2f2 --- /dev/null +++ b/modules/ui/user_page.py @@ -0,0 +1,350 @@ +import streamlit as st +import logging +from datetime import datetime, timezone +from dateutil.parser import parse + +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +#Importaciones locales. + +from ..utils.widget_utils import generate_unique_key +from session_state import initialize_session_state, logout + +from translations import get_translations + +from ..auth.auth import authenticate_user, authenticate_student, authenticate_admin + +from ..admin.admin_ui import admin_page + +from ..chatbot import display_sidebar_chat + +# Students activities +from ..studentact.student_activities_v2 import display_student_activities +from ..studentact.current_situation_interface import display_current_situation_interface +from ..studentact.current_situation_analysis import analyze_text_dimensions + + +##Importaciones desde la configuración de bases datos ####### + +from ..database.sql_db import ( + get_user, + get_admin_user, + get_student_user, + get_teacher_user, + create_user, + create_student_user, + create_teacher_user, + create_admin_user, + update_student_user, # Agregada + delete_student_user, # Agregada + record_login, + record_logout, + get_recent_sessions, + get_user_total_time, + store_application_request, + store_student_feedback +) + +from ..database.mongo_db import ( + get_collection, + insert_document, + find_documents, + update_document, + delete_document +) + +from ..database.morphosintax_mongo_db import ( + store_student_morphosyntax_result, + get_student_morphosyntax_analysis, + update_student_morphosyntax_analysis, + delete_student_morphosyntax_analysis, + get_student_morphosyntax_data +) + +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +##Importaciones desde los análisis ####### +from ..morphosyntax.morphosyntax_interface import ( + display_morphosyntax_interface, + display_arc_diagram +) + +from ..semantic.semantic_interface import ( + display_semantic_interface, + display_semantic_results +) + +from ..semantic.semantic_live_interface import display_semantic_live_interface + +from ..discourse.discourse_live_interface import display_discourse_live_interface + +from ..discourse.discourse_interface import ( # Agregar esta importación + display_discourse_interface, + display_discourse_results +) + + + +#################################################################################### +def user_page(lang_code, t): + logger.info(f"Entrando en user_page para el estudiante: {st.session_state.username}") + + # Inicializar el tab seleccionado si no existe + if 'selected_tab' not in st.session_state: + st.session_state.selected_tab = 0 + + # Inicializar el estado del análisis en vivo + if 'semantic_live_active' not in st.session_state: + st.session_state.semantic_live_active = False + + # Manejar la carga inicial de datos del usuario + if 'user_data' not in st.session_state: + with st.spinner(t.get('loading_data', "Cargando tus datos...")): + try: + st.session_state.user_data = get_student_morphosyntax_data(st.session_state.username) + st.session_state.last_data_fetch = datetime.now(timezone.utc).isoformat() + except Exception as e: + logger.error(f"Error al obtener datos del usuario: {str(e)}") + st.error(t.get('data_load_error', "Hubo un problema al cargar tus datos. Por favor, intenta recargar la página.")) + return + + logger.info(f"Idioma actual: {st.session_state.lang_code}") + logger.info(f"Modelos NLP cargados: {'nlp_models' in st.session_state}") + + # Configuración de idiomas disponibles + languages = {'Español': 'es', 'Português': 'pt', 'English': 'en', 'Français': 'fr'} + + # Estilos CSS personalizados + st.markdown(""" + + """, unsafe_allow_html=True) + + # Barra superior con información del usuario y controles + with st.container(): + col1, col2, col3 = st.columns([2, 2, 1]) + with col1: + st.markdown(f"

{t['welcome']}, {st.session_state.username}

", + unsafe_allow_html=True) + with col2: + selected_lang = st.selectbox( + t['select_language'], + list(languages.keys()), + index=list(languages.values()).index(st.session_state.lang_code), + key=f"language_selector_{st.session_state.username}_{st.session_state.lang_code}" + ) + new_lang_code = languages[selected_lang] + if st.session_state.lang_code != new_lang_code: + st.session_state.lang_code = new_lang_code + st.rerun() + with col3: + if st.button(t['logout'], + key=f"logout_button_{st.session_state.username}_{st.session_state.lang_code}"): + st.session_state.clear() + st.rerun() + + st.markdown("---") + + # Asegurarse de que tenemos las traducciones del chatbot + chatbot_t = t.get('CHATBOT_TRANSLATIONS', {}).get(lang_code, {}) + + # Mostrar chatbot en sidebar + display_sidebar_chat(lang_code, chatbot_t) + + # Inicializar estados para todos los tabs + if 'tab_states' not in st.session_state: + st.session_state.tab_states = { + 'current_situation_active': False, + 'morpho_active': False, + 'semantic_live_active': False, + 'semantic_active': False, + 'discourse_live_active': False, + 'discourse_active': False, + 'activities_active': False, + 'feedback_active': False + } + + # Sistema de tabs + tab_names = [ + t.get('current_situation_tab', "Mi Situación Actual"), + t.get('morpho_tab', 'Análisis Morfosintáctico'), + t.get('semantic_live_tab', 'Análisis Semántico Vivo'), + t.get('semantic_tab', 'Análisis Semántico'), + t.get('discourse_live_tab', 'Análisis de Discurso Vivo'), + t.get('discourse_tab', 'Análsis de Discurso'), + t.get('activities_tab', 'Mis Actividades'), + t.get('feedback_tab', 'Formulario de Comentarios') + ] + + tabs = st.tabs(tab_names) + + # Manejar el contenido de cada tab + for index, tab in enumerate(tabs): + with tab: + try: + # Actualizar el tab seleccionado solo si no hay un análisis activo + if tab.selected and st.session_state.selected_tab != index: + can_switch = True + for state_key in st.session_state.tab_states.keys(): + if st.session_state.tab_states[state_key] and index != get_tab_index(state_key): + can_switch = False + break + if can_switch: + st.session_state.selected_tab = index + + if index == 0: # Situación actual + st.session_state.tab_states['current_situation_active'] = True + display_current_situation_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 1: # Morfosintáctico + st.session_state.tab_states['morpho_active'] = True + display_morphosyntax_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 2: # Semántico Vivo + st.session_state.tab_states['semantic_live_active'] = True + display_semantic_live_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 3: # Semántico + st.session_state.tab_states['semantic_active'] = True + display_semantic_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 4: # Discurso Vivo + st.session_state.tab_states['discourse_live_active'] = True + display_discourse_live_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 5: # Discurso + st.session_state.tab_states['discourse_active'] = True + display_discourse_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 6: # Actividades + st.session_state.tab_states['activities_active'] = True + display_student_activities( + username=st.session_state.username, + lang_code=st.session_state.lang_code, + t=t # Pasamos todo el diccionario de traducciones + ) + + elif index == 7: # Feedback + st.session_state.tab_states['feedback_active'] = True + display_feedback_form( + st.session_state.lang_code, + t # Ya estaba recibiendo el diccionario completo + ) + + except Exception as e: + # Desactivar el estado en caso de error + state_key = get_state_key_for_index(index) + if state_key: + st.session_state.tab_states[state_key] = False + logger.error(f"Error en tab {index}: {str(e)}") + st.error(t.get('tab_error', 'Error al cargar esta sección')) + + # Panel de depuración (solo visible en desarrollo) + if st.session_state.get('debug_mode', False): + with st.expander("Debug Info"): + st.write(f"Página actual: {st.session_state.page}") + st.write(f"Usuario: {st.session_state.get('username', 'No logueado')}") + st.write(f"Rol: {st.session_state.get('role', 'No definido')}") + st.write(f"Idioma: {st.session_state.lang_code}") + st.write(f"Tab seleccionado: {st.session_state.selected_tab}") + st.write(f"Última actualización de datos: {st.session_state.get('last_data_fetch', 'Nunca')}") + st.write(f"Traducciones disponibles: {list(t.keys())}") + + +def get_tab_index(state_key): + """Obtiene el índice del tab basado en la clave de estado""" + index_map = { + 'current_situation_active': 0, + 'morpho_active': 1, + 'semantic_live_active': 2, + 'semantic_active': 3, + 'discourse_live_active': 4, + 'discourse_active': 5, + 'activities_active': 6, + 'feedback_active': 7 + } + return index_map.get(state_key, -1) + +def get_state_key_for_index(index): + """Obtiene la clave de estado basada en el índice del tab""" + state_map = { + 0: 'current_situation_active', + 1: 'morpho_active', + 2: 'semantic_live_active', + 3: 'semantic_active', + 4: 'discourse_live_active', + 5: 'discourse_active', + 6: 'activities_active', + 7: 'feedback_active' + } + return state_map.get(index) + +def display_feedback_form(lang_code, t): + """ + Muestra el formulario de retroalimentación + Args: + lang_code: Código de idioma + t: Diccionario de traducciones + """ + logging.info(f"display_feedback_form called with lang_code: {lang_code}") + + # Obtener traducciones específicas para el formulario de feedback + feedback_t = t.get('FEEDBACK', {}) + + # Si no hay traducciones específicas, usar el diccionario general + if not feedback_t: + feedback_t = t + + st.header(feedback_t.get('feedback_title', 'Formulario de Opinión')) + + name = st.text_input(feedback_t.get('name', 'Nombre')) + email = st.text_input(feedback_t.get('email', 'Correo electrónico')) + feedback = st.text_area(feedback_t.get('feedback', 'Retroalimentación')) + + if st.button(feedback_t.get('submit', 'Enviar')): + if name and email and feedback: + if store_student_feedback(st.session_state.username, name, email, feedback): + st.success(feedback_t.get('feedback_success', 'Gracias por tu respuesta')) + else: + st.error(feedback_t.get('feedback_error', 'Hubo un problema al enviar el formulario. Por favor, intenta de nuevo.')) + else: + st.warning(feedback_t.get('complete_all_fields', 'Por favor, completa todos los campos')) +