Update modules/studentact/student_activities_v2.py
Browse files
modules/studentact/student_activities_v2.py
CHANGED
@@ -1,571 +1,571 @@
|
|
1 |
-
##############
|
2 |
-
###modules/studentact/student_activities_v2.py
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
import re
|
6 |
-
import io
|
7 |
-
from io import BytesIO
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
import time
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
from datetime import datetime, timedelta
|
13 |
-
from spacy import displacy
|
14 |
-
import random
|
15 |
-
import base64
|
16 |
-
import seaborn as sns
|
17 |
-
import logging
|
18 |
-
|
19 |
-
# Importaciones de la base de datos
|
20 |
-
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
-
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
-
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
-
from ..database.chat_mongo_db import get_chat_history
|
24 |
-
from ..database.current_situation_mongo_db import get_current_situation_analysis
|
25 |
-
from ..database.claude_recommendations_mongo_db import get_claude_recommendations
|
26 |
-
|
27 |
-
# Importar la función generate_unique_key
|
28 |
-
from ..utils.widget_utils import generate_unique_key
|
29 |
-
|
30 |
-
logger = logging.getLogger(__name__)
|
31 |
-
|
32 |
-
###################################################################################
|
33 |
-
|
34 |
-
def display_student_activities(username: str, lang_code: str, t: dict):
|
35 |
-
"""
|
36 |
-
Muestra todas las actividades del estudiante
|
37 |
-
Args:
|
38 |
-
username: Nombre del estudiante
|
39 |
-
lang_code: Código del idioma
|
40 |
-
t: Diccionario de traducciones
|
41 |
-
"""
|
42 |
-
try:
|
43 |
-
st.header(t.get('activities_title', 'Mis Actividades'))
|
44 |
-
|
45 |
-
# Tabs para diferentes tipos de análisis
|
46 |
-
tabs = st.tabs([
|
47 |
-
t.get('
|
48 |
-
t.get('
|
49 |
-
t.get('
|
50 |
-
t.get('
|
51 |
-
t.get('
|
52 |
-
])
|
53 |
-
|
54 |
-
# Tab de Situación Actual
|
55 |
-
with tabs[0]:
|
56 |
-
|
57 |
-
|
58 |
-
# Tab de Análisis Morfosintáctico
|
59 |
-
with tabs[1]:
|
60 |
-
|
61 |
-
|
62 |
-
# Tab de Análisis Semántico
|
63 |
-
with tabs[2]:
|
64 |
-
display_semantic_activities(username, t)
|
65 |
-
|
66 |
-
# Tab de Análisis del Discurso
|
67 |
-
with tabs[3]:
|
68 |
-
display_discourse_activities(username, t)
|
69 |
-
|
70 |
-
# Tab de Conversaciones del Chat
|
71 |
-
with tabs[4]:
|
72 |
-
display_chat_activities(username, t)
|
73 |
-
|
74 |
-
except Exception as e:
|
75 |
-
logger.error(f"Error mostrando actividades: {str(e)}")
|
76 |
-
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
77 |
-
|
78 |
-
|
79 |
-
###############################################################################################
|
80 |
-
|
81 |
-
def display_current_situation_activities(username: str, t: dict):
|
82 |
-
"""
|
83 |
-
Muestra análisis de situación actual junto con las recomendaciones de Claude
|
84 |
-
unificando la información de ambas colecciones y emparejándolas por cercanía temporal.
|
85 |
-
"""
|
86 |
-
try:
|
87 |
-
# Recuperar datos de ambas colecciones
|
88 |
-
logger.info(f"Recuperando análisis de situación actual para {username}")
|
89 |
-
situation_analyses = get_current_situation_analysis(username, limit=10)
|
90 |
-
|
91 |
-
# Verificar si hay datos
|
92 |
-
if situation_analyses:
|
93 |
-
logger.info(f"Recuperados {len(situation_analyses)} análisis de situación")
|
94 |
-
# Depurar para ver la estructura de datos
|
95 |
-
for i, analysis in enumerate(situation_analyses):
|
96 |
-
logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}")
|
97 |
-
if 'metrics' in analysis:
|
98 |
-
logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}")
|
99 |
-
else:
|
100 |
-
logger.warning("No se encontraron análisis de situación actual")
|
101 |
-
|
102 |
-
logger.info(f"Recuperando recomendaciones de Claude para {username}")
|
103 |
-
claude_recommendations = get_claude_recommendations(username)
|
104 |
-
|
105 |
-
if claude_recommendations:
|
106 |
-
logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude")
|
107 |
-
else:
|
108 |
-
logger.warning("No se encontraron recomendaciones de Claude")
|
109 |
-
|
110 |
-
# Verificar si hay algún tipo de análisis disponible
|
111 |
-
if not situation_analyses and not claude_recommendations:
|
112 |
-
logger.info("No se encontraron análisis de situación actual ni recomendaciones")
|
113 |
-
st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados'))
|
114 |
-
return
|
115 |
-
|
116 |
-
# Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo
|
117 |
-
logger.info("Creando emparejamientos temporales de análisis")
|
118 |
-
|
119 |
-
# Convertir timestamps a objetos datetime para comparación
|
120 |
-
situation_times = []
|
121 |
-
for analysis in situation_analyses:
|
122 |
-
if 'timestamp' in analysis:
|
123 |
-
try:
|
124 |
-
timestamp_str = analysis['timestamp']
|
125 |
-
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
126 |
-
situation_times.append((dt, analysis))
|
127 |
-
except Exception as e:
|
128 |
-
logger.error(f"Error parseando timestamp de situación: {str(e)}")
|
129 |
-
|
130 |
-
recommendation_times = []
|
131 |
-
for recommendation in claude_recommendations:
|
132 |
-
if 'timestamp' in recommendation:
|
133 |
-
try:
|
134 |
-
timestamp_str = recommendation['timestamp']
|
135 |
-
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
136 |
-
recommendation_times.append((dt, recommendation))
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error parseando timestamp de recomendación: {str(e)}")
|
139 |
-
|
140 |
-
# Ordenar por tiempo
|
141 |
-
situation_times.sort(key=lambda x: x[0], reverse=True)
|
142 |
-
recommendation_times.sort(key=lambda x: x[0], reverse=True)
|
143 |
-
|
144 |
-
# Crear pares combinados
|
145 |
-
combined_items = []
|
146 |
-
|
147 |
-
# Primero, procesar todas las situaciones encontrando la recomendación más cercana
|
148 |
-
for sit_time, situation in situation_times:
|
149 |
-
# Buscar la recomendación más cercana en tiempo
|
150 |
-
best_match = None
|
151 |
-
min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos)
|
152 |
-
best_rec_time = None
|
153 |
-
|
154 |
-
for rec_time, recommendation in recommendation_times:
|
155 |
-
time_diff = abs(sit_time - rec_time)
|
156 |
-
if time_diff < min_diff:
|
157 |
-
min_diff = time_diff
|
158 |
-
best_match = recommendation
|
159 |
-
best_rec_time = rec_time
|
160 |
-
|
161 |
-
# Crear un elemento combinado
|
162 |
-
if best_match:
|
163 |
-
timestamp_key = sit_time.isoformat()
|
164 |
-
combined_items.append((timestamp_key, {
|
165 |
-
'situation': situation,
|
166 |
-
'recommendation': best_match,
|
167 |
-
'time_diff': min_diff.total_seconds()
|
168 |
-
}))
|
169 |
-
# Eliminar la recomendación usada para no reutilizarla
|
170 |
-
recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time]
|
171 |
-
logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})")
|
172 |
-
else:
|
173 |
-
# Si no hay recomendación cercana, solo incluir la situación
|
174 |
-
timestamp_key = sit_time.isoformat()
|
175 |
-
combined_items.append((timestamp_key, {
|
176 |
-
'situation': situation
|
177 |
-
}))
|
178 |
-
logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana")
|
179 |
-
|
180 |
-
# Agregar recomendaciones restantes sin situación
|
181 |
-
for rec_time, recommendation in recommendation_times:
|
182 |
-
timestamp_key = rec_time.isoformat()
|
183 |
-
combined_items.append((timestamp_key, {
|
184 |
-
'recommendation': recommendation
|
185 |
-
}))
|
186 |
-
logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano")
|
187 |
-
|
188 |
-
# Ordenar por tiempo (más reciente primero)
|
189 |
-
combined_items.sort(key=lambda x: x[0], reverse=True)
|
190 |
-
|
191 |
-
logger.info(f"Procesando {len(combined_items)} elementos combinados")
|
192 |
-
|
193 |
-
# Mostrar cada par combinado
|
194 |
-
for i, (timestamp_key, analysis_pair) in enumerate(combined_items):
|
195 |
-
try:
|
196 |
-
# Obtener datos de situación y recomendación
|
197 |
-
situation_data = analysis_pair.get('situation', {})
|
198 |
-
recommendation_data = analysis_pair.get('recommendation', {})
|
199 |
-
time_diff = analysis_pair.get('time_diff')
|
200 |
-
|
201 |
-
# Si no hay ningún dato, continuar al siguiente
|
202 |
-
if not situation_data and not recommendation_data:
|
203 |
-
continue
|
204 |
-
|
205 |
-
# Determinar qué texto mostrar (priorizar el de la situación)
|
206 |
-
text_to_show = situation_data.get('text', recommendation_data.get('text', ''))
|
207 |
-
text_type = situation_data.get('text_type', recommendation_data.get('text_type', ''))
|
208 |
-
|
209 |
-
# Formatear fecha para mostrar
|
210 |
-
try:
|
211 |
-
# Usar timestamp del key que ya es un formato ISO
|
212 |
-
dt = datetime.fromisoformat(timestamp_key)
|
213 |
-
formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S")
|
214 |
-
except Exception as date_error:
|
215 |
-
logger.error(f"Error formateando fecha: {str(date_error)}")
|
216 |
-
formatted_date = timestamp_key
|
217 |
-
|
218 |
-
# Determinar el título del expander
|
219 |
-
title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
220 |
-
if text_type:
|
221 |
-
text_type_display = {
|
222 |
-
'academic_article': t.get('academic_article', 'Artículo académico'),
|
223 |
-
'student_essay': t.get('student_essay', 'Trabajo universitario'),
|
224 |
-
'general_communication': t.get('general_communication', 'Comunicación general')
|
225 |
-
}.get(text_type, text_type)
|
226 |
-
title += f" - {text_type_display}"
|
227 |
-
|
228 |
-
# Añadir indicador de emparejamiento si existe
|
229 |
-
if time_diff is not None:
|
230 |
-
if time_diff < 60: # menos de un minuto
|
231 |
-
title += f" 🔄 (emparejados)"
|
232 |
-
else:
|
233 |
-
title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)"
|
234 |
-
|
235 |
-
# Usar un ID único para cada expander
|
236 |
-
expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}"
|
237 |
-
|
238 |
-
# Mostrar el análisis en un expander
|
239 |
-
with st.expander(title, expanded=False):
|
240 |
-
# Mostrar texto analizado con key único
|
241 |
-
st.subheader(t.get('analyzed_text', 'Texto analizado'))
|
242 |
-
st.text_area(
|
243 |
-
"Text Content",
|
244 |
-
value=text_to_show,
|
245 |
-
height=100,
|
246 |
-
disabled=True,
|
247 |
-
label_visibility="collapsed",
|
248 |
-
key=f"text_area_{expander_id}"
|
249 |
-
)
|
250 |
-
|
251 |
-
# Crear tabs para separar diagnóstico y recomendaciones
|
252 |
-
diagnosis_tab, recommendations_tab = st.tabs([
|
253 |
-
t.get('diagnosis_tab', 'Diagnóstico'),
|
254 |
-
t.get('recommendations_tab', 'Recomendaciones')
|
255 |
-
])
|
256 |
-
|
257 |
-
# Tab de diagnóstico
|
258 |
-
with diagnosis_tab:
|
259 |
-
if situation_data and 'metrics' in situation_data:
|
260 |
-
metrics = situation_data['metrics']
|
261 |
-
|
262 |
-
# Dividir en dos columnas
|
263 |
-
col1, col2 = st.columns(2)
|
264 |
-
|
265 |
-
# Principales métricas en formato de tarjetas
|
266 |
-
with col1:
|
267 |
-
st.subheader(t.get('key_metrics', 'Métricas clave'))
|
268 |
-
|
269 |
-
# Mostrar cada métrica principal
|
270 |
-
for metric_name, metric_data in metrics.items():
|
271 |
-
try:
|
272 |
-
# Determinar la puntuación
|
273 |
-
score = None
|
274 |
-
if isinstance(metric_data, dict):
|
275 |
-
# Intentar diferentes nombres de campo
|
276 |
-
if 'normalized_score' in metric_data:
|
277 |
-
score = metric_data['normalized_score']
|
278 |
-
elif 'score' in metric_data:
|
279 |
-
score = metric_data['score']
|
280 |
-
elif 'value' in metric_data:
|
281 |
-
score = metric_data['value']
|
282 |
-
elif isinstance(metric_data, (int, float)):
|
283 |
-
score = metric_data
|
284 |
-
|
285 |
-
if score is not None:
|
286 |
-
# Asegurarse de que score es numérico
|
287 |
-
if isinstance(score, (int, float)):
|
288 |
-
# Determinar color y emoji basado en la puntuación
|
289 |
-
if score < 0.5:
|
290 |
-
emoji = "🔴"
|
291 |
-
color = "#ffcccc" # light red
|
292 |
-
elif score < 0.75:
|
293 |
-
emoji = "🟡"
|
294 |
-
color = "#ffffcc" # light yellow
|
295 |
-
else:
|
296 |
-
emoji = "🟢"
|
297 |
-
color = "#ccffcc" # light green
|
298 |
-
|
299 |
-
# Mostrar la métrica con estilo
|
300 |
-
st.markdown(f"""
|
301 |
-
<div style="background-color:{color}; padding:10px; border-radius:5px; margin-bottom:10px;">
|
302 |
-
<b>{emoji} {metric_name.capitalize()}:</b> {score:.2f}
|
303 |
-
</div>
|
304 |
-
""", unsafe_allow_html=True)
|
305 |
-
else:
|
306 |
-
# Si no es numérico, mostrar como texto
|
307 |
-
st.markdown(f"""
|
308 |
-
<div style="background-color:#f0f0f0; padding:10px; border-radius:5px; margin-bottom:10px;">
|
309 |
-
<b>ℹ️ {metric_name.capitalize()}:</b> {str(score)}
|
310 |
-
</div>
|
311 |
-
""", unsafe_allow_html=True)
|
312 |
-
except Exception as e:
|
313 |
-
logger.error(f"Error procesando métrica {metric_name}: {str(e)}")
|
314 |
-
|
315 |
-
# Mostrar detalles adicionales si están disponibles
|
316 |
-
with col2:
|
317 |
-
st.subheader(t.get('details', 'Detalles'))
|
318 |
-
|
319 |
-
# Para cada métrica, mostrar sus detalles si existen
|
320 |
-
for metric_name, metric_data in metrics.items():
|
321 |
-
try:
|
322 |
-
if isinstance(metric_data, dict):
|
323 |
-
# Mostrar detalles directamente o buscar en subcampos
|
324 |
-
details = None
|
325 |
-
if 'details' in metric_data and metric_data['details']:
|
326 |
-
details = metric_data['details']
|
327 |
-
else:
|
328 |
-
# Crear un diccionario con los detalles excluyendo 'normalized_score' y similares
|
329 |
-
details = {k: v for k, v in metric_data.items()
|
330 |
-
if k not in ['normalized_score', 'score', 'value']}
|
331 |
-
|
332 |
-
if details:
|
333 |
-
st.write(f"**{metric_name.capitalize()}**")
|
334 |
-
st.json(details, expanded=False)
|
335 |
-
except Exception as e:
|
336 |
-
logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}")
|
337 |
-
else:
|
338 |
-
st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles'))
|
339 |
-
|
340 |
-
# Tab de recomendaciones
|
341 |
-
with recommendations_tab:
|
342 |
-
if recommendation_data and 'recommendations' in recommendation_data:
|
343 |
-
st.markdown(f"""
|
344 |
-
<div style="padding: 20px; border-radius: 10px;
|
345 |
-
background-color: #f8f9fa; margin-bottom: 20px;">
|
346 |
-
{recommendation_data['recommendations']}
|
347 |
-
</div>
|
348 |
-
""", unsafe_allow_html=True)
|
349 |
-
elif recommendation_data and 'feedback' in recommendation_data:
|
350 |
-
st.markdown(f"""
|
351 |
-
<div style="padding: 20px; border-radius: 10px;
|
352 |
-
background-color: #f8f9fa; margin-bottom: 20px;">
|
353 |
-
{recommendation_data['feedback']}
|
354 |
-
</div>
|
355 |
-
""", unsafe_allow_html=True)
|
356 |
-
else:
|
357 |
-
st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles'))
|
358 |
-
|
359 |
-
except Exception as e:
|
360 |
-
logger.error(f"Error procesando par de análisis: {str(e)}")
|
361 |
-
continue
|
362 |
-
|
363 |
-
except Exception as e:
|
364 |
-
logger.error(f"Error mostrando actividades de situación actual: {str(e)}")
|
365 |
-
st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual'))
|
366 |
-
|
367 |
-
###############################################################################################
|
368 |
-
|
369 |
-
def display_morphosyntax_activities(username: str, t: dict):
|
370 |
-
"""Muestra actividades de análisis morfosintáctico"""
|
371 |
-
try:
|
372 |
-
analyses = get_student_morphosyntax_analysis(username)
|
373 |
-
if not analyses:
|
374 |
-
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
375 |
-
return
|
376 |
-
|
377 |
-
for analysis in analyses:
|
378 |
-
with st.expander(
|
379 |
-
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
380 |
-
expanded=False
|
381 |
-
):
|
382 |
-
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
383 |
-
st.write(analysis['text'])
|
384 |
-
|
385 |
-
if 'arc_diagrams' in analysis:
|
386 |
-
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
387 |
-
for diagram in analysis['arc_diagrams']:
|
388 |
-
st.write(diagram, unsafe_allow_html=True)
|
389 |
-
|
390 |
-
except Exception as e:
|
391 |
-
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
392 |
-
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
393 |
-
|
394 |
-
|
395 |
-
###############################################################################################
|
396 |
-
|
397 |
-
def display_semantic_activities(username: str, t: dict):
|
398 |
-
"""Muestra actividades de análisis semántico"""
|
399 |
-
try:
|
400 |
-
logger.info(f"Recuperando análisis semántico para {username}")
|
401 |
-
analyses = get_student_semantic_analysis(username)
|
402 |
-
|
403 |
-
if not analyses:
|
404 |
-
logger.info("No se encontraron análisis semánticos")
|
405 |
-
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
406 |
-
return
|
407 |
-
|
408 |
-
logger.info(f"Procesando {len(analyses)} análisis semánticos")
|
409 |
-
|
410 |
-
for analysis in analyses:
|
411 |
-
try:
|
412 |
-
# Verificar campos necesarios
|
413 |
-
if not all(key in analysis for key in ['timestamp', 'concept_graph']):
|
414 |
-
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
415 |
-
continue
|
416 |
-
|
417 |
-
# Formatear fecha
|
418 |
-
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
419 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
420 |
-
|
421 |
-
# Crear expander
|
422 |
-
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
423 |
-
# Procesar y mostrar gráfico
|
424 |
-
if analysis.get('concept_graph'):
|
425 |
-
try:
|
426 |
-
# Convertir de base64 a bytes
|
427 |
-
logger.debug("Decodificando gráfico de conceptos")
|
428 |
-
image_data = analysis['concept_graph']
|
429 |
-
|
430 |
-
# Si el gráfico ya es bytes, usarlo directamente
|
431 |
-
if isinstance(image_data, bytes):
|
432 |
-
image_bytes = image_data
|
433 |
-
else:
|
434 |
-
# Si es string base64, decodificar
|
435 |
-
image_bytes = base64.b64decode(image_data)
|
436 |
-
|
437 |
-
logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}")
|
438 |
-
|
439 |
-
# Mostrar imagen
|
440 |
-
st.image(
|
441 |
-
image_bytes,
|
442 |
-
caption=t.get('concept_network', 'Red de Conceptos'),
|
443 |
-
use_column_width=True
|
444 |
-
)
|
445 |
-
logger.debug("Gráfico mostrado exitosamente")
|
446 |
-
|
447 |
-
except Exception as img_error:
|
448 |
-
logger.error(f"Error procesando gráfico: {str(img_error)}")
|
449 |
-
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
450 |
-
else:
|
451 |
-
st.info(t.get('no_graph', 'No hay visualización disponible'))
|
452 |
-
|
453 |
-
except Exception as e:
|
454 |
-
logger.error(f"Error procesando análisis individual: {str(e)}")
|
455 |
-
continue
|
456 |
-
|
457 |
-
except Exception as e:
|
458 |
-
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
459 |
-
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
460 |
-
|
461 |
-
|
462 |
-
###################################################################################################
|
463 |
-
def display_discourse_activities(username: str, t: dict):
|
464 |
-
"""Muestra actividades de análisis del discurso"""
|
465 |
-
try:
|
466 |
-
logger.info(f"Recuperando análisis del discurso para {username}")
|
467 |
-
analyses = get_student_discourse_analysis(username)
|
468 |
-
|
469 |
-
if not analyses:
|
470 |
-
logger.info("No se encontraron análisis del discurso")
|
471 |
-
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
472 |
-
return
|
473 |
-
|
474 |
-
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
475 |
-
for analysis in analyses:
|
476 |
-
try:
|
477 |
-
# Verificar campos mínimos necesarios
|
478 |
-
if not all(key in analysis for key in ['timestamp', 'combined_graph']):
|
479 |
-
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
480 |
-
continue
|
481 |
-
|
482 |
-
# Formatear fecha
|
483 |
-
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
484 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
485 |
-
|
486 |
-
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
487 |
-
if analysis['combined_graph']:
|
488 |
-
logger.debug("Decodificando gráfico combinado")
|
489 |
-
try:
|
490 |
-
image_bytes = base64.b64decode(analysis['combined_graph'])
|
491 |
-
st.image(image_bytes, use_column_width=True)
|
492 |
-
logger.debug("Gráfico mostrado exitosamente")
|
493 |
-
except Exception as img_error:
|
494 |
-
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
495 |
-
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
496 |
-
else:
|
497 |
-
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
|
498 |
-
|
499 |
-
except Exception as e:
|
500 |
-
logger.error(f"Error procesando análisis individual: {str(e)}")
|
501 |
-
continue
|
502 |
-
|
503 |
-
except Exception as e:
|
504 |
-
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
505 |
-
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
506 |
-
|
507 |
-
#################################################################################
|
508 |
-
def
|
509 |
-
"""
|
510 |
-
Muestra historial de conversaciones del chat
|
511 |
-
"""
|
512 |
-
try:
|
513 |
-
# Obtener historial del chat
|
514 |
-
chat_history = get_chat_history(
|
515 |
-
username=username,
|
516 |
-
analysis_type='sidebar',
|
517 |
-
limit=50
|
518 |
-
)
|
519 |
-
|
520 |
-
if not chat_history:
|
521 |
-
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
522 |
-
return
|
523 |
-
|
524 |
-
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
525 |
-
try:
|
526 |
-
# Convertir timestamp a datetime para formato
|
527 |
-
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
528 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
529 |
-
|
530 |
-
with st.expander(
|
531 |
-
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
532 |
-
expanded=False
|
533 |
-
):
|
534 |
-
if 'messages' in chat and chat['messages']:
|
535 |
-
# Mostrar cada mensaje en la conversación
|
536 |
-
for message in chat['messages']:
|
537 |
-
role = message.get('role', 'unknown')
|
538 |
-
content = message.get('content', '')
|
539 |
-
|
540 |
-
# Usar el componente de chat de Streamlit
|
541 |
-
with st.chat_message(role):
|
542 |
-
st.markdown(content)
|
543 |
-
|
544 |
-
# Agregar separador entre mensajes
|
545 |
-
st.divider()
|
546 |
-
else:
|
547 |
-
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
548 |
-
|
549 |
-
except Exception as e:
|
550 |
-
logger.error(f"Error mostrando conversación: {str(e)}")
|
551 |
-
continue
|
552 |
-
|
553 |
-
except Exception as e:
|
554 |
-
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
555 |
-
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
556 |
-
|
557 |
-
#################################################################################
|
558 |
-
def
|
559 |
-
"""Muestra la comparación de análisis del discurso"""
|
560 |
-
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
561 |
-
|
562 |
-
col1, col2 = st.columns(2)
|
563 |
-
with col1:
|
564 |
-
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
565 |
-
df1 = pd.DataFrame(analysis['key_concepts1'])
|
566 |
-
st.dataframe(df1)
|
567 |
-
|
568 |
-
with col2:
|
569 |
-
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
570 |
-
df2 = pd.DataFrame(analysis['key_concepts2'])
|
571 |
st.dataframe(df2)
|
|
|
1 |
+
##############
|
2 |
+
###modules/studentact/student_activities_v2.py
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import re
|
6 |
+
import io
|
7 |
+
from io import BytesIO
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from datetime import datetime, timedelta
|
13 |
+
from spacy import displacy
|
14 |
+
import random
|
15 |
+
import base64
|
16 |
+
import seaborn as sns
|
17 |
+
import logging
|
18 |
+
|
19 |
+
# Importaciones de la base de datos
|
20 |
+
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
+
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
+
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
+
from ..database.chat_mongo_db import get_chat_history
|
24 |
+
from ..database.current_situation_mongo_db import get_current_situation_analysis
|
25 |
+
from ..database.claude_recommendations_mongo_db import get_claude_recommendations
|
26 |
+
|
27 |
+
# Importar la función generate_unique_key
|
28 |
+
from ..utils.widget_utils import generate_unique_key
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
###################################################################################
|
33 |
+
|
34 |
+
def display_student_activities(username: str, lang_code: str, t: dict):
|
35 |
+
"""
|
36 |
+
Muestra todas las actividades del estudiante
|
37 |
+
Args:
|
38 |
+
username: Nombre del estudiante
|
39 |
+
lang_code: Código del idioma
|
40 |
+
t: Diccionario de traducciones
|
41 |
+
"""
|
42 |
+
try:
|
43 |
+
#st.header(t.get('activities_title', 'Mis Actividades'))
|
44 |
+
|
45 |
+
# Tabs para diferentes tipos de análisis
|
46 |
+
tabs = st.tabs([
|
47 |
+
t.get('record_current_situation_activities', 'Registros de mi Situación Actual'),
|
48 |
+
t.get('record_morpho_activities', 'Registros de los Análisis Morfosintáctico de textos'),
|
49 |
+
t.get('record_semantic_activities', 'Registros de los Análisis Semántico de Textos'),
|
50 |
+
t.get('record_discourse_activities', 'Registros de los Análisis Comparados de Textos'),
|
51 |
+
t.get('record_chat_activities', 'Registros de las interacciones con el Asistente Virtual')
|
52 |
+
])
|
53 |
+
|
54 |
+
# Tab de Situación Actual
|
55 |
+
with tabs[0]:
|
56 |
+
display_record_current_situation_activitievities(username, t)
|
57 |
+
|
58 |
+
# Tab de Análisis Morfosintáctico
|
59 |
+
with tabs[1]:
|
60 |
+
display_record_morpho_activities(username, t)
|
61 |
+
|
62 |
+
# Tab de Análisis Semántico
|
63 |
+
with tabs[2]:
|
64 |
+
display_semantic_activities(username, t)
|
65 |
+
|
66 |
+
# Tab de Análisis del Discurso
|
67 |
+
with tabs[3]:
|
68 |
+
display_discourse_activities(username, t)
|
69 |
+
|
70 |
+
# Tab de Conversaciones del Chat
|
71 |
+
with tabs[4]:
|
72 |
+
display_chat_activities(username, t)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Error mostrando actividades: {str(e)}")
|
76 |
+
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
77 |
+
|
78 |
+
|
79 |
+
###############################################################################################
|
80 |
+
|
81 |
+
def display_current_situation_activities(username: str, t: dict):
|
82 |
+
"""
|
83 |
+
Muestra análisis de situación actual junto con las recomendaciones de Claude
|
84 |
+
unificando la información de ambas colecciones y emparejándolas por cercanía temporal.
|
85 |
+
"""
|
86 |
+
try:
|
87 |
+
# Recuperar datos de ambas colecciones
|
88 |
+
logger.info(f"Recuperando análisis de situación actual para {username}")
|
89 |
+
situation_analyses = get_current_situation_analysis(username, limit=10)
|
90 |
+
|
91 |
+
# Verificar si hay datos
|
92 |
+
if situation_analyses:
|
93 |
+
logger.info(f"Recuperados {len(situation_analyses)} análisis de situación")
|
94 |
+
# Depurar para ver la estructura de datos
|
95 |
+
for i, analysis in enumerate(situation_analyses):
|
96 |
+
logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}")
|
97 |
+
if 'metrics' in analysis:
|
98 |
+
logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}")
|
99 |
+
else:
|
100 |
+
logger.warning("No se encontraron análisis de situación actual")
|
101 |
+
|
102 |
+
logger.info(f"Recuperando recomendaciones de Claude para {username}")
|
103 |
+
claude_recommendations = get_claude_recommendations(username)
|
104 |
+
|
105 |
+
if claude_recommendations:
|
106 |
+
logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude")
|
107 |
+
else:
|
108 |
+
logger.warning("No se encontraron recomendaciones de Claude")
|
109 |
+
|
110 |
+
# Verificar si hay algún tipo de análisis disponible
|
111 |
+
if not situation_analyses and not claude_recommendations:
|
112 |
+
logger.info("No se encontraron análisis de situación actual ni recomendaciones")
|
113 |
+
st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados'))
|
114 |
+
return
|
115 |
+
|
116 |
+
# Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo
|
117 |
+
logger.info("Creando emparejamientos temporales de análisis")
|
118 |
+
|
119 |
+
# Convertir timestamps a objetos datetime para comparación
|
120 |
+
situation_times = []
|
121 |
+
for analysis in situation_analyses:
|
122 |
+
if 'timestamp' in analysis:
|
123 |
+
try:
|
124 |
+
timestamp_str = analysis['timestamp']
|
125 |
+
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
126 |
+
situation_times.append((dt, analysis))
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error parseando timestamp de situación: {str(e)}")
|
129 |
+
|
130 |
+
recommendation_times = []
|
131 |
+
for recommendation in claude_recommendations:
|
132 |
+
if 'timestamp' in recommendation:
|
133 |
+
try:
|
134 |
+
timestamp_str = recommendation['timestamp']
|
135 |
+
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
136 |
+
recommendation_times.append((dt, recommendation))
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Error parseando timestamp de recomendación: {str(e)}")
|
139 |
+
|
140 |
+
# Ordenar por tiempo
|
141 |
+
situation_times.sort(key=lambda x: x[0], reverse=True)
|
142 |
+
recommendation_times.sort(key=lambda x: x[0], reverse=True)
|
143 |
+
|
144 |
+
# Crear pares combinados
|
145 |
+
combined_items = []
|
146 |
+
|
147 |
+
# Primero, procesar todas las situaciones encontrando la recomendación más cercana
|
148 |
+
for sit_time, situation in situation_times:
|
149 |
+
# Buscar la recomendación más cercana en tiempo
|
150 |
+
best_match = None
|
151 |
+
min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos)
|
152 |
+
best_rec_time = None
|
153 |
+
|
154 |
+
for rec_time, recommendation in recommendation_times:
|
155 |
+
time_diff = abs(sit_time - rec_time)
|
156 |
+
if time_diff < min_diff:
|
157 |
+
min_diff = time_diff
|
158 |
+
best_match = recommendation
|
159 |
+
best_rec_time = rec_time
|
160 |
+
|
161 |
+
# Crear un elemento combinado
|
162 |
+
if best_match:
|
163 |
+
timestamp_key = sit_time.isoformat()
|
164 |
+
combined_items.append((timestamp_key, {
|
165 |
+
'situation': situation,
|
166 |
+
'recommendation': best_match,
|
167 |
+
'time_diff': min_diff.total_seconds()
|
168 |
+
}))
|
169 |
+
# Eliminar la recomendación usada para no reutilizarla
|
170 |
+
recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time]
|
171 |
+
logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})")
|
172 |
+
else:
|
173 |
+
# Si no hay recomendación cercana, solo incluir la situación
|
174 |
+
timestamp_key = sit_time.isoformat()
|
175 |
+
combined_items.append((timestamp_key, {
|
176 |
+
'situation': situation
|
177 |
+
}))
|
178 |
+
logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana")
|
179 |
+
|
180 |
+
# Agregar recomendaciones restantes sin situación
|
181 |
+
for rec_time, recommendation in recommendation_times:
|
182 |
+
timestamp_key = rec_time.isoformat()
|
183 |
+
combined_items.append((timestamp_key, {
|
184 |
+
'recommendation': recommendation
|
185 |
+
}))
|
186 |
+
logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano")
|
187 |
+
|
188 |
+
# Ordenar por tiempo (más reciente primero)
|
189 |
+
combined_items.sort(key=lambda x: x[0], reverse=True)
|
190 |
+
|
191 |
+
logger.info(f"Procesando {len(combined_items)} elementos combinados")
|
192 |
+
|
193 |
+
# Mostrar cada par combinado
|
194 |
+
for i, (timestamp_key, analysis_pair) in enumerate(combined_items):
|
195 |
+
try:
|
196 |
+
# Obtener datos de situación y recomendación
|
197 |
+
situation_data = analysis_pair.get('situation', {})
|
198 |
+
recommendation_data = analysis_pair.get('recommendation', {})
|
199 |
+
time_diff = analysis_pair.get('time_diff')
|
200 |
+
|
201 |
+
# Si no hay ningún dato, continuar al siguiente
|
202 |
+
if not situation_data and not recommendation_data:
|
203 |
+
continue
|
204 |
+
|
205 |
+
# Determinar qué texto mostrar (priorizar el de la situación)
|
206 |
+
text_to_show = situation_data.get('text', recommendation_data.get('text', ''))
|
207 |
+
text_type = situation_data.get('text_type', recommendation_data.get('text_type', ''))
|
208 |
+
|
209 |
+
# Formatear fecha para mostrar
|
210 |
+
try:
|
211 |
+
# Usar timestamp del key que ya es un formato ISO
|
212 |
+
dt = datetime.fromisoformat(timestamp_key)
|
213 |
+
formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S")
|
214 |
+
except Exception as date_error:
|
215 |
+
logger.error(f"Error formateando fecha: {str(date_error)}")
|
216 |
+
formatted_date = timestamp_key
|
217 |
+
|
218 |
+
# Determinar el título del expander
|
219 |
+
title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
220 |
+
if text_type:
|
221 |
+
text_type_display = {
|
222 |
+
'academic_article': t.get('academic_article', 'Artículo académico'),
|
223 |
+
'student_essay': t.get('student_essay', 'Trabajo universitario'),
|
224 |
+
'general_communication': t.get('general_communication', 'Comunicación general')
|
225 |
+
}.get(text_type, text_type)
|
226 |
+
title += f" - {text_type_display}"
|
227 |
+
|
228 |
+
# Añadir indicador de emparejamiento si existe
|
229 |
+
if time_diff is not None:
|
230 |
+
if time_diff < 60: # menos de un minuto
|
231 |
+
title += f" 🔄 (emparejados)"
|
232 |
+
else:
|
233 |
+
title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)"
|
234 |
+
|
235 |
+
# Usar un ID único para cada expander
|
236 |
+
expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}"
|
237 |
+
|
238 |
+
# Mostrar el análisis en un expander
|
239 |
+
with st.expander(title, expanded=False):
|
240 |
+
# Mostrar texto analizado con key único
|
241 |
+
st.subheader(t.get('analyzed_text', 'Texto analizado'))
|
242 |
+
st.text_area(
|
243 |
+
"Text Content",
|
244 |
+
value=text_to_show,
|
245 |
+
height=100,
|
246 |
+
disabled=True,
|
247 |
+
label_visibility="collapsed",
|
248 |
+
key=f"text_area_{expander_id}"
|
249 |
+
)
|
250 |
+
|
251 |
+
# Crear tabs para separar diagnóstico y recomendaciones
|
252 |
+
diagnosis_tab, recommendations_tab = st.tabs([
|
253 |
+
t.get('diagnosis_tab', 'Diagnóstico'),
|
254 |
+
t.get('recommendations_tab', 'Recomendaciones')
|
255 |
+
])
|
256 |
+
|
257 |
+
# Tab de diagnóstico
|
258 |
+
with diagnosis_tab:
|
259 |
+
if situation_data and 'metrics' in situation_data:
|
260 |
+
metrics = situation_data['metrics']
|
261 |
+
|
262 |
+
# Dividir en dos columnas
|
263 |
+
col1, col2 = st.columns(2)
|
264 |
+
|
265 |
+
# Principales métricas en formato de tarjetas
|
266 |
+
with col1:
|
267 |
+
st.subheader(t.get('key_metrics', 'Métricas clave'))
|
268 |
+
|
269 |
+
# Mostrar cada métrica principal
|
270 |
+
for metric_name, metric_data in metrics.items():
|
271 |
+
try:
|
272 |
+
# Determinar la puntuación
|
273 |
+
score = None
|
274 |
+
if isinstance(metric_data, dict):
|
275 |
+
# Intentar diferentes nombres de campo
|
276 |
+
if 'normalized_score' in metric_data:
|
277 |
+
score = metric_data['normalized_score']
|
278 |
+
elif 'score' in metric_data:
|
279 |
+
score = metric_data['score']
|
280 |
+
elif 'value' in metric_data:
|
281 |
+
score = metric_data['value']
|
282 |
+
elif isinstance(metric_data, (int, float)):
|
283 |
+
score = metric_data
|
284 |
+
|
285 |
+
if score is not None:
|
286 |
+
# Asegurarse de que score es numérico
|
287 |
+
if isinstance(score, (int, float)):
|
288 |
+
# Determinar color y emoji basado en la puntuación
|
289 |
+
if score < 0.5:
|
290 |
+
emoji = "🔴"
|
291 |
+
color = "#ffcccc" # light red
|
292 |
+
elif score < 0.75:
|
293 |
+
emoji = "🟡"
|
294 |
+
color = "#ffffcc" # light yellow
|
295 |
+
else:
|
296 |
+
emoji = "🟢"
|
297 |
+
color = "#ccffcc" # light green
|
298 |
+
|
299 |
+
# Mostrar la métrica con estilo
|
300 |
+
st.markdown(f"""
|
301 |
+
<div style="background-color:{color}; padding:10px; border-radius:5px; margin-bottom:10px;">
|
302 |
+
<b>{emoji} {metric_name.capitalize()}:</b> {score:.2f}
|
303 |
+
</div>
|
304 |
+
""", unsafe_allow_html=True)
|
305 |
+
else:
|
306 |
+
# Si no es numérico, mostrar como texto
|
307 |
+
st.markdown(f"""
|
308 |
+
<div style="background-color:#f0f0f0; padding:10px; border-radius:5px; margin-bottom:10px;">
|
309 |
+
<b>ℹ️ {metric_name.capitalize()}:</b> {str(score)}
|
310 |
+
</div>
|
311 |
+
""", unsafe_allow_html=True)
|
312 |
+
except Exception as e:
|
313 |
+
logger.error(f"Error procesando métrica {metric_name}: {str(e)}")
|
314 |
+
|
315 |
+
# Mostrar detalles adicionales si están disponibles
|
316 |
+
with col2:
|
317 |
+
st.subheader(t.get('details', 'Detalles'))
|
318 |
+
|
319 |
+
# Para cada métrica, mostrar sus detalles si existen
|
320 |
+
for metric_name, metric_data in metrics.items():
|
321 |
+
try:
|
322 |
+
if isinstance(metric_data, dict):
|
323 |
+
# Mostrar detalles directamente o buscar en subcampos
|
324 |
+
details = None
|
325 |
+
if 'details' in metric_data and metric_data['details']:
|
326 |
+
details = metric_data['details']
|
327 |
+
else:
|
328 |
+
# Crear un diccionario con los detalles excluyendo 'normalized_score' y similares
|
329 |
+
details = {k: v for k, v in metric_data.items()
|
330 |
+
if k not in ['normalized_score', 'score', 'value']}
|
331 |
+
|
332 |
+
if details:
|
333 |
+
st.write(f"**{metric_name.capitalize()}**")
|
334 |
+
st.json(details, expanded=False)
|
335 |
+
except Exception as e:
|
336 |
+
logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}")
|
337 |
+
else:
|
338 |
+
st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles'))
|
339 |
+
|
340 |
+
# Tab de recomendaciones
|
341 |
+
with recommendations_tab:
|
342 |
+
if recommendation_data and 'recommendations' in recommendation_data:
|
343 |
+
st.markdown(f"""
|
344 |
+
<div style="padding: 20px; border-radius: 10px;
|
345 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
346 |
+
{recommendation_data['recommendations']}
|
347 |
+
</div>
|
348 |
+
""", unsafe_allow_html=True)
|
349 |
+
elif recommendation_data and 'feedback' in recommendation_data:
|
350 |
+
st.markdown(f"""
|
351 |
+
<div style="padding: 20px; border-radius: 10px;
|
352 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
353 |
+
{recommendation_data['feedback']}
|
354 |
+
</div>
|
355 |
+
""", unsafe_allow_html=True)
|
356 |
+
else:
|
357 |
+
st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles'))
|
358 |
+
|
359 |
+
except Exception as e:
|
360 |
+
logger.error(f"Error procesando par de análisis: {str(e)}")
|
361 |
+
continue
|
362 |
+
|
363 |
+
except Exception as e:
|
364 |
+
logger.error(f"Error mostrando actividades de situación actual: {str(e)}")
|
365 |
+
st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual'))
|
366 |
+
|
367 |
+
###############################################################################################
|
368 |
+
|
369 |
+
def display_morphosyntax_activities(username: str, t: dict):
|
370 |
+
"""Muestra actividades de análisis morfosintáctico"""
|
371 |
+
try:
|
372 |
+
analyses = get_student_morphosyntax_analysis(username)
|
373 |
+
if not analyses:
|
374 |
+
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
375 |
+
return
|
376 |
+
|
377 |
+
for analysis in analyses:
|
378 |
+
with st.expander(
|
379 |
+
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
380 |
+
expanded=False
|
381 |
+
):
|
382 |
+
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
383 |
+
st.write(analysis['text'])
|
384 |
+
|
385 |
+
if 'arc_diagrams' in analysis:
|
386 |
+
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
387 |
+
for diagram in analysis['arc_diagrams']:
|
388 |
+
st.write(diagram, unsafe_allow_html=True)
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
392 |
+
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
393 |
+
|
394 |
+
|
395 |
+
###############################################################################################
|
396 |
+
|
397 |
+
def display_semantic_activities(username: str, t: dict):
|
398 |
+
"""Muestra actividades de análisis semántico"""
|
399 |
+
try:
|
400 |
+
logger.info(f"Recuperando análisis semántico para {username}")
|
401 |
+
analyses = get_student_semantic_analysis(username)
|
402 |
+
|
403 |
+
if not analyses:
|
404 |
+
logger.info("No se encontraron análisis semánticos")
|
405 |
+
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
406 |
+
return
|
407 |
+
|
408 |
+
logger.info(f"Procesando {len(analyses)} análisis semánticos")
|
409 |
+
|
410 |
+
for analysis in analyses:
|
411 |
+
try:
|
412 |
+
# Verificar campos necesarios
|
413 |
+
if not all(key in analysis for key in ['timestamp', 'concept_graph']):
|
414 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
415 |
+
continue
|
416 |
+
|
417 |
+
# Formatear fecha
|
418 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
419 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
420 |
+
|
421 |
+
# Crear expander
|
422 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
423 |
+
# Procesar y mostrar gráfico
|
424 |
+
if analysis.get('concept_graph'):
|
425 |
+
try:
|
426 |
+
# Convertir de base64 a bytes
|
427 |
+
logger.debug("Decodificando gráfico de conceptos")
|
428 |
+
image_data = analysis['concept_graph']
|
429 |
+
|
430 |
+
# Si el gráfico ya es bytes, usarlo directamente
|
431 |
+
if isinstance(image_data, bytes):
|
432 |
+
image_bytes = image_data
|
433 |
+
else:
|
434 |
+
# Si es string base64, decodificar
|
435 |
+
image_bytes = base64.b64decode(image_data)
|
436 |
+
|
437 |
+
logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}")
|
438 |
+
|
439 |
+
# Mostrar imagen
|
440 |
+
st.image(
|
441 |
+
image_bytes,
|
442 |
+
caption=t.get('concept_network', 'Red de Conceptos'),
|
443 |
+
use_column_width=True
|
444 |
+
)
|
445 |
+
logger.debug("Gráfico mostrado exitosamente")
|
446 |
+
|
447 |
+
except Exception as img_error:
|
448 |
+
logger.error(f"Error procesando gráfico: {str(img_error)}")
|
449 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
450 |
+
else:
|
451 |
+
st.info(t.get('no_graph', 'No hay visualización disponible'))
|
452 |
+
|
453 |
+
except Exception as e:
|
454 |
+
logger.error(f"Error procesando análisis individual: {str(e)}")
|
455 |
+
continue
|
456 |
+
|
457 |
+
except Exception as e:
|
458 |
+
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
459 |
+
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
460 |
+
|
461 |
+
|
462 |
+
###################################################################################################
|
463 |
+
def display_discourse_activities(username: str, t: dict):
|
464 |
+
"""Muestra actividades de análisis del discurso"""
|
465 |
+
try:
|
466 |
+
logger.info(f"Recuperando análisis del discurso para {username}")
|
467 |
+
analyses = get_student_discourse_analysis(username)
|
468 |
+
|
469 |
+
if not analyses:
|
470 |
+
logger.info("No se encontraron análisis del discurso")
|
471 |
+
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
472 |
+
return
|
473 |
+
|
474 |
+
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
475 |
+
for analysis in analyses:
|
476 |
+
try:
|
477 |
+
# Verificar campos mínimos necesarios
|
478 |
+
if not all(key in analysis for key in ['timestamp', 'combined_graph']):
|
479 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
480 |
+
continue
|
481 |
+
|
482 |
+
# Formatear fecha
|
483 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
484 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
485 |
+
|
486 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
487 |
+
if analysis['combined_graph']:
|
488 |
+
logger.debug("Decodificando gráfico combinado")
|
489 |
+
try:
|
490 |
+
image_bytes = base64.b64decode(analysis['combined_graph'])
|
491 |
+
st.image(image_bytes, use_column_width=True)
|
492 |
+
logger.debug("Gráfico mostrado exitosamente")
|
493 |
+
except Exception as img_error:
|
494 |
+
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
495 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
496 |
+
else:
|
497 |
+
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
|
498 |
+
|
499 |
+
except Exception as e:
|
500 |
+
logger.error(f"Error procesando análisis individual: {str(e)}")
|
501 |
+
continue
|
502 |
+
|
503 |
+
except Exception as e:
|
504 |
+
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
505 |
+
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
506 |
+
|
507 |
+
#################################################################################
|
508 |
+
def display_record_chat_activities (username: str, t: dict):
|
509 |
+
"""
|
510 |
+
Muestra historial de conversaciones del chat
|
511 |
+
"""
|
512 |
+
try:
|
513 |
+
# Obtener historial del chat
|
514 |
+
chat_history = get_chat_history(
|
515 |
+
username=username,
|
516 |
+
analysis_type='sidebar',
|
517 |
+
limit=50
|
518 |
+
)
|
519 |
+
|
520 |
+
if not chat_history:
|
521 |
+
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
522 |
+
return
|
523 |
+
|
524 |
+
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
525 |
+
try:
|
526 |
+
# Convertir timestamp a datetime para formato
|
527 |
+
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
528 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
529 |
+
|
530 |
+
with st.expander(
|
531 |
+
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
532 |
+
expanded=False
|
533 |
+
):
|
534 |
+
if 'messages' in chat and chat['messages']:
|
535 |
+
# Mostrar cada mensaje en la conversación
|
536 |
+
for message in chat['messages']:
|
537 |
+
role = message.get('role', 'unknown')
|
538 |
+
content = message.get('content', '')
|
539 |
+
|
540 |
+
# Usar el componente de chat de Streamlit
|
541 |
+
with st.chat_message(role):
|
542 |
+
st.markdown(content)
|
543 |
+
|
544 |
+
# Agregar separador entre mensajes
|
545 |
+
st.divider()
|
546 |
+
else:
|
547 |
+
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
548 |
+
|
549 |
+
except Exception as e:
|
550 |
+
logger.error(f"Error mostrando conversación: {str(e)}")
|
551 |
+
continue
|
552 |
+
|
553 |
+
except Exception as e:
|
554 |
+
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
555 |
+
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
556 |
+
|
557 |
+
#################################################################################
|
558 |
+
def display_record_discourse_activities(analysis: dict, t: dict):
|
559 |
+
"""Muestra la comparación de análisis del discurso"""
|
560 |
+
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
561 |
+
|
562 |
+
col1, col2 = st.columns(2)
|
563 |
+
with col1:
|
564 |
+
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
565 |
+
df1 = pd.DataFrame(analysis['key_concepts1'])
|
566 |
+
st.dataframe(df1)
|
567 |
+
|
568 |
+
with col2:
|
569 |
+
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
570 |
+
df2 = pd.DataFrame(analysis['key_concepts2'])
|
571 |
st.dataframe(df2)
|