Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
| 4 |
from typing import List, Dict
|
| 5 |
import time
|
| 6 |
|
| 7 |
class LlamaDemo:
|
| 8 |
def __init__(self):
|
| 9 |
-
|
|
|
|
| 10 |
# Initialize in lazy loading fashion
|
| 11 |
self._model = None
|
| 12 |
self._tokenizer = None
|
|
@@ -17,24 +18,31 @@ class LlamaDemo:
|
|
| 17 |
self._model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
self.model_name,
|
| 19 |
torch_dtype=torch.float16,
|
| 20 |
-
device_map="auto"
|
|
|
|
| 21 |
)
|
| 22 |
return self._model
|
| 23 |
|
| 24 |
@property
|
| 25 |
def tokenizer(self):
|
| 26 |
if self._tokenizer is None:
|
| 27 |
-
self._tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 28 |
return self._tokenizer
|
| 29 |
|
| 30 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Generate response
|
| 34 |
with torch.no_grad():
|
| 35 |
outputs = self.model.generate(
|
| 36 |
**inputs,
|
| 37 |
-
|
| 38 |
num_return_sequences=1,
|
| 39 |
temperature=0.7,
|
| 40 |
do_sample=True,
|
|
@@ -42,20 +50,23 @@ class LlamaDemo:
|
|
| 42 |
)
|
| 43 |
|
| 44 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def main():
|
| 48 |
st.set_page_config(
|
| 49 |
-
page_title="Llama
|
| 50 |
page_icon="🦙",
|
| 51 |
layout="wide"
|
| 52 |
)
|
| 53 |
|
| 54 |
-
st.title("🦙 Llama
|
| 55 |
|
| 56 |
# Initialize session state
|
| 57 |
if 'llama' not in st.session_state:
|
| 58 |
-
st.
|
|
|
|
| 59 |
|
| 60 |
if 'chat_history' not in st.session_state:
|
| 61 |
st.session_state.chat_history = []
|
|
@@ -85,7 +96,7 @@ def main():
|
|
| 85 |
with st.chat_message("assistant"):
|
| 86 |
message_placeholder = st.empty()
|
| 87 |
|
| 88 |
-
with st.spinner("
|
| 89 |
response = st.session_state.llama.generate_response(prompt)
|
| 90 |
message_placeholder.write(response)
|
| 91 |
|
|
@@ -95,11 +106,20 @@ def main():
|
|
| 95 |
"content": response
|
| 96 |
})
|
| 97 |
|
| 98 |
-
# Sidebar with settings
|
| 99 |
with st.sidebar:
|
| 100 |
st.header("Settings")
|
| 101 |
max_length = st.slider("Maximum response length", 64, 1024, 512)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
if st.button("Clear Chat History"):
|
| 104 |
st.session_state.chat_history = []
|
| 105 |
st.experimental_rerun()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
from typing import List, Dict
|
| 5 |
import time
|
| 6 |
|
| 7 |
class LlamaDemo:
|
| 8 |
def __init__(self):
|
| 9 |
+
# Using TinyLlama, which is open source and doesn't require authentication
|
| 10 |
+
self.model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 11 |
# Initialize in lazy loading fashion
|
| 12 |
self._model = None
|
| 13 |
self._tokenizer = None
|
|
|
|
| 18 |
self._model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
self.model_name,
|
| 20 |
torch_dtype=torch.float16,
|
| 21 |
+
device_map="auto",
|
| 22 |
+
trust_remote_code=True
|
| 23 |
)
|
| 24 |
return self._model
|
| 25 |
|
| 26 |
@property
|
| 27 |
def tokenizer(self):
|
| 28 |
if self._tokenizer is None:
|
| 29 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
| 30 |
+
self.model_name,
|
| 31 |
+
trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
return self._tokenizer
|
| 34 |
|
| 35 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
| 36 |
+
# Format the prompt according to TinyLlama's chat template
|
| 37 |
+
chat_prompt = f"<|system|>You are a helpful AI assistant.</s><|user|>{prompt}</s><|assistant|>"
|
| 38 |
+
|
| 39 |
+
inputs = self.tokenizer(chat_prompt, return_tensors="pt").to(self.model.device)
|
| 40 |
|
| 41 |
# Generate response
|
| 42 |
with torch.no_grad():
|
| 43 |
outputs = self.model.generate(
|
| 44 |
**inputs,
|
| 45 |
+
max_new_tokens=max_length,
|
| 46 |
num_return_sequences=1,
|
| 47 |
temperature=0.7,
|
| 48 |
do_sample=True,
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
+
# Remove the prompt from the response
|
| 54 |
+
response = response.split("<|assistant|>")[-1].strip()
|
| 55 |
+
return response
|
| 56 |
|
| 57 |
def main():
|
| 58 |
st.set_page_config(
|
| 59 |
+
page_title="Open Source Llama Demo",
|
| 60 |
page_icon="🦙",
|
| 61 |
layout="wide"
|
| 62 |
)
|
| 63 |
|
| 64 |
+
st.title("🦙 Open Source Llama Demo")
|
| 65 |
|
| 66 |
# Initialize session state
|
| 67 |
if 'llama' not in st.session_state:
|
| 68 |
+
with st.spinner("Loading model... This might take a few minutes..."):
|
| 69 |
+
st.session_state.llama = LlamaDemo()
|
| 70 |
|
| 71 |
if 'chat_history' not in st.session_state:
|
| 72 |
st.session_state.chat_history = []
|
|
|
|
| 96 |
with st.chat_message("assistant"):
|
| 97 |
message_placeholder = st.empty()
|
| 98 |
|
| 99 |
+
with st.spinner("Thinking..."):
|
| 100 |
response = st.session_state.llama.generate_response(prompt)
|
| 101 |
message_placeholder.write(response)
|
| 102 |
|
|
|
|
| 106 |
"content": response
|
| 107 |
})
|
| 108 |
|
| 109 |
+
# Sidebar with settings and info
|
| 110 |
with st.sidebar:
|
| 111 |
st.header("Settings")
|
| 112 |
max_length = st.slider("Maximum response length", 64, 1024, 512)
|
| 113 |
|
| 114 |
+
st.markdown("---")
|
| 115 |
+
st.markdown("""
|
| 116 |
+
### About
|
| 117 |
+
This demo uses TinyLlama, an open source language model that's smaller but
|
| 118 |
+
still capable. It's perfect for demonstrations and testing.
|
| 119 |
+
|
| 120 |
+
The model is loaded locally and doesn't require any authentication or API keys.
|
| 121 |
+
""")
|
| 122 |
+
|
| 123 |
if st.button("Clear Chat History"):
|
| 124 |
st.session_state.chat_history = []
|
| 125 |
st.experimental_rerun()
|