File size: 2,783 Bytes
c7f1f5b d3778bb 957c8b2 60946b5 957c8b2 c7f1f5b a2bd669 957c8b2 a2bd669 957c8b2 d3778bb 957c8b2 a2bd669 957c8b2 d3778bb c7f1f5b a2bd669 d3778bb 957c8b2 cc92ef8 d3778bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
from .semantic_analysis import (
create_concept_graph,
visualize_concept_graph,
identify_key_concepts,
POS_COLORS,
POS_TRANSLATIONS,
ENTITY_LABELS
)
def compare_semantic_analysis(text1, text2, nlp, lang):
doc1 = nlp(text1)
doc2 = nlp(text2)
# Identificar conceptos clave para ambos documentos
key_concepts1 = identify_key_concepts(doc1)
key_concepts2 = identify_key_concepts(doc2)
# Crear grafos de conceptos para ambos documentos
G1 = create_concept_graph(doc1, key_concepts1)
G2 = create_concept_graph(doc2, key_concepts2)
# Visualizar los grafos de conceptos
fig1 = visualize_concept_graph(G1, lang)
fig2 = visualize_concept_graph(G2, lang)
# Remover los títulos superpuestos
fig1.suptitle("")
fig2.suptitle("")
return fig1, fig2, key_concepts1, key_concepts2
def create_concept_table(key_concepts):
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
df['Frecuencia'] = df['Frecuencia'].round(2)
return df
def perform_discourse_analysis(text1, text2, nlp, lang):
graph1, graph2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang)
# Crear tablas de conceptos clave
table1 = create_concept_table(key_concepts1)
table2 = create_concept_table(key_concepts2)
return {
'graph1': graph1,
'graph2': graph2,
'key_concepts1': key_concepts1,
'key_concepts2': key_concepts2
}
def display_discourse_analysis_results(analysis_result, lang_code):
translations = {
'es': {
'doc1_title': "Documento 1: Relaciones Conceptuales",
'doc2_title': "Documento 2: Relaciones Conceptuales",
'key_concepts': "Conceptos Clave",
},
'en': {
'doc1_title': "Document 1: Conceptual Relations",
'doc2_title': "Document 2: Conceptual Relations",
'key_concepts': "Key Concepts",
},
'fr': {
'doc1_title': "Document 1 : Relations Conceptuelles",
'doc2_title': "Document 2 : Relations Conceptuelles",
'key_concepts': "Concepts Clés",
}
}
t = translations[lang_code]
col1, col2 = st.columns(2)
with col1:
with st.expander(t['doc1_title'], expanded=True):
st.pyplot(analysis_result['graph1'])
st.subheader(t['key_concepts'])
st.table(analysis_result['table1'])
with col2:
with st.expander(t['doc2_title'], expanded=True):
st.pyplot(analysis_result['graph2'])
st.subheader(t['key_concepts'])
st.table(analysis_result['table2']) |