File size: 21,222 Bytes
44d2f4e 7d2b8ec 43b44fb 7d2b8ec 43b44fb e19483a 43b44fb 7d2b8ec 44d2f4e 1e95929 a178fb1 44d2f4e cec31c3 9f78896 90e40b9 2f0c295 cec31c3 7d2b8ec 26486d0 3ece79a 60e4a0a 3ece79a 39800a0 c0718a1 60e4a0a 39800a0 3ece79a 39800a0 290f988 39800a0 290f988 39800a0 3ece79a 25af5c0 3ece79a 26486d0 ff3f2f8 2de63a1 7d2b8ec 8d6379a e5d0ce8 7d2b8ec e5d0ce8 229756d e5d0ce8 2de63a1 229756d 7d2b8ec e5d0ce8 229756d 26486d0 8d6379a 229756d 7d2b8ec 229756d 8d6379a 229756d 7d2b8ec 229756d 8d6379a 26486d0 229756d 7d2b8ec 26486d0 229756d 7d2b8ec 26486d0 ee5cd97 6d01086 7d2b8ec 5f1328a ee5cd97 7d2b8ec 5f1328a 7d2b8ec ee5cd97 5f1328a 7d2b8ec ee5cd97 4a52be9 7d2b8ec 4a52be9 7d2b8ec ee5cd97 7d2b8ec 4a52be9 7d2b8ec 4a52be9 a972c69 7d2b8ec ee5cd97 7d2b8ec 4f8d08e 7d2b8ec c810a25 8b900da c810a25 9addec4 c810a25 8b900da c810a25 9addec4 c810a25 8b900da c810a25 9addec4 c810a25 8b900da c810a25 8b900da c810a25 8b900da 8189f16 9addec4 7236d98 8b900da 31d258b e442b89 31d258b e442b89 31d258b e442b89 31d258b 55ec21b 31d258b e442b89 55ec21b e442b89 55ec21b 31d258b 26486d0 7e9e1b6 cec31c3 e19483a cec31c3 e19483a cec31c3 e19483a cec31c3 e19483a cec31c3 e19483a cec31c3 e19483a cec31c3 e19483a 098b351 cec31c3 16dcc0e 098b351 c4ed35f e19483a 098b351 c4ed35f 8a2688a 3fdaa70 c4ed35f 8a2688a c4ed35f 3fdaa70 098b351 e68d122 3fdaa70 e68d122 c4ed35f 3fdaa70 c4ed35f bd565ef c4ed35f bd565ef c4ed35f bd565ef c4ed35f 3fdaa70 c4ed35f 8576dc4 e68d122 3fdaa70 8d6379a 5a27028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
#Importaciones generales
import streamlit as st
import re
import io
import base64
import matplotlib.pyplot as plt
import pandas as pd
import time
from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player
from spacy import displacy
#Importaciones locales
#Importaciones locales de autenticación y base de datos
from .auth import authenticate_user, register_user
from .database import get_student_data, store_morphosyntax_result, store_semantic_result, store_chat_history, create_admin_user, create_student_user
#Importaciones locales funciones de análisis
from .morpho_analysis import generate_arc_diagram, get_repeated_words_colors, highlight_repeated_words, POS_COLORS, POS_TRANSLATIONS
from .semantic_analysis import visualize_semantic_relations, perform_semantic_analysis
from .discourse_analysis import compare_semantic_analysis, perform_discourse_analysis
from .chatbot import initialize_chatbot, get_chatbot_response
##################################################################################################
def login_register_page():
st.title("AIdeaText")
# Dividir la pantalla en dos columnas
left_column, right_column = st.columns([1, 3]) # 25% izquierda, 75% derecha
# Sección izquierda para login y registro
with left_column:
tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"])
with tab1:
login_form()
with tab2:
register_form()
# Sección derecha para videos de YouTube
with right_column:
st.header("Videos: pitch, demos, entrevistas, otros")
# Diccionario de videos de YouTube con títulos amigables
videos = {
"Intro AideaText": "https://www.youtube.com/watch?v=UA-md1VxaRc",
"Pitch que facilitó acceder a la segunda fase de IFE Explora del TEC de Monterrey": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s",
"Entrevista con el doctor Guillermo Ruíz, EduMate Lima Perú" : "https://www.youtube.com/watch?v=_ch8cRja3oc",
"Demo versión desktop de AIdeaText": "https://www.youtube.com/watch?v=nP6eXbog-ZY"
}
# Selector de video
video_titles = list(videos.keys())
if video_titles:
selected_title = st.selectbox("Selecciona un video tutorial:", video_titles)
# Obtener la URL correspondiente al título seleccionado
if selected_title in videos:
selected_video = videos[selected_title]
# Reproductor de YouTube
try:
st_player(selected_video)
except Exception as e:
st.error(f"Error al cargar el video: {str(e)}")
else:
st.warning("El video seleccionado no está disponible.")
else:
st.warning("No hay videos disponibles para mostrar.")
# Información adicional
st.markdown("""
## Novedades de la versión actual
- Nueva función de análisis semántico
- Soporte para múltiples idiomas
- Interfaz mejorada para una mejor experiencia de usuario
""")
##################################################################################################
#def main():
# if 'logged_in' not in st.session_state:
# st.session_state.logged_in = False
# print(f"Estado de sesión al inicio de main: {st.session_state}") # Nuevo log
# if not st.session_state.logged_in:
login_register_page()
# else:
# print(f"Usuario autenticado en main: {st.session_state.username}, Rol: {st.session_state.role}") # Log modificado
# if st.session_state.role == 'Administrador':
# print("Intentando mostrar página de administrador") # Nuevo log
# admin_page()
# else:
# print(f"Mostrando página de usuario para rol: {st.session_state.role}") # Nuevo log
# user_page()
# print(f"Estado de sesión al final de main: {st.session_state}") # Nuevo log
def main():
if 'page' not in st.session_state:
st.session_state.page = 'login'
if st.session_state.page == 'login':
login_register_page()
elif st.session_state.page == 'admin':
admin_page()
elif st.session_state.page == 'user':
user_page()
##################################################################################################
def login_form():
username = st.text_input("Correo electrónico")
password = st.text_input("Contraseña", type="password")
if st.button("Iniciar Sesión"):
success, role = authenticate_user(username, password)
if success:
st.session_state.clear() # Limpia la sesión antes de establecer nuevos valores
st.session_state.logged_in = True
st.session_state.username = username
st.session_state.role = role
st.session_state.page = 'admin' if role == 'Administrador' else 'user'
print(f"Inicio de sesión exitoso. Usuario: {username}, Rol: {role}")
print(f"Estado de sesión después de login: {st.session_state}") # Nuevo log
st.rerun() # Usa st.rerun() en lugar de st.experimental_rerun()
else:
st.error("Credenciales incorrectas")
##################################################################################################
def admin_page():
st.title("Panel de Administración")
st.write(f"Bienvenido, {st.session_state.username}")
# Crear nuevo usuario estudiante
st.header("Crear Nuevo Usuario Estudiante")
new_username = st.text_input("Correo electrónico del nuevo usuario")
new_password = st.text_input("Contraseña", type="password")
if st.button("Crear Usuario"):
if create_student_user(new_username, new_password):
st.success(f"Usuario estudiante {new_username} creado exitosamente")
else:
st.error("Error al crear el usuario estudiante")
##################################################################################################
def register_form():
##
##
pass
##################################################################################################
def display_chat_interface():
st.markdown("### Chat con AIdeaText")
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
for i, (role, text) in enumerate(st.session_state.chat_history):
if role == "user":
st.text_area(f"Tú:", value=text, height=50, key=f"user_message_{i}", disabled=True)
else:
st.text_area(f"AIdeaText:", value=text, height=50, key=f"bot_message_{i}", disabled=True)
user_input = st.text_input("Escribe tu mensaje aquí:")
if st.button("Enviar"):
if user_input:
st.session_state.chat_history.append(("user", user_input))
response = get_chatbot_response(user_input)
st.session_state.chat_history.append(("bot", response))
st.experimental_rerun()
##################################################################################################
def display_student_progress(username, lang_code='es'):
student_data = get_student_data(username)
if student_data is None:
st.warning("No se encontraron datos para este estudiante.")
st.info("Intenta realizar algunos análisis de texto primero.")
return
st.title(f"Progreso de {username}")
if student_data['entries_count'] > 0:
if 'word_count' in student_data and student_data['word_count']:
st.subheader("Total de palabras por categoría gramatical")
df = pd.DataFrame(list(student_data['word_count'].items()), columns=['category', 'count'])
df['label'] = df.apply(lambda x: f"{POS_TRANSLATIONS[lang_code].get(x['category'], x['category'])}", axis=1)
df = df.sort_values('count', ascending=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.bar(df['label'], df['count'], color=[POS_COLORS.get(cat, '#CCCCCC') for cat in df['category']])
ax.set_xlabel('Categoría Gramatical')
ax.set_ylabel('Cantidad de Palabras')
ax.set_title('Total de palabras por categoría gramatical')
plt.xticks(rotation=45, ha='right')
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height,
f'{height}',
ha='center', va='bottom')
plt.tight_layout()
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
st.image(buf, use_column_width=True)
else:
st.info("No hay datos de conteo de palabras disponibles.")
st.header("Diagramas de Arco")
with st.expander("Ver todos los Diagramas de Arco"):
for i, entry in enumerate(student_data['entries']):
if 'arc_diagrams' in entry and entry['arc_diagrams']:
st.subheader(f"Entrada {i+1} - {entry['timestamp']}")
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
st.header("Diagramas de Red")
with st.expander("Ver todos los Diagramas de Red"):
for i, entry in enumerate(student_data['entries']):
if 'network_diagram' in entry and entry['network_diagram']:
st.subheader(f"Entrada {i+1} - {entry['timestamp']}")
try:
image_bytes = base64.b64decode(entry['network_diagram'])
st.image(image_bytes)
except Exception as e:
st.error(f"Error al mostrar el diagrama de red: {str(e)}")
else:
st.warning("No se encontraron entradas para este estudiante.")
st.info("Intenta realizar algunos análisis de texto primero.")
##################################################################################################
def display_morphosyntax_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis morfológico y sintáctico",
'input_label': "Ingrese un texto para analizar (máx. 5,000 palabras):",
'input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción...",
'analyze_button': "Analizar texto",
'repeated_words': "Palabras repetidas",
'legend': "Leyenda: Categorías gramaticales",
'arc_diagram': "Análisis sintáctico: Diagrama de arco",
'sentence': "Oración"
},
'en': {
'title': "AIdeaText - Morphological and Syntactic Analysis",
'input_label': "Enter a text to analyze (max 5,000 words):",
'input_placeholder': "The goal of this app is for you to improve your writing skills...",
'analyze_button': "Analyze text",
'repeated_words': "Repeated words",
'legend': "Legend: Grammatical categories",
'arc_diagram': "Syntactic analysis: Arc diagram",
'sentence': "Sentence"
},
'fr': {
'title': "AIdeaText - Analyse morphologique et syntaxique",
'input_label': "Entrez un texte à analyser (max 5 000 mots) :",
'input_placeholder': "Le but de cette application est d'améliorer vos compétences en rédaction...",
'analyze_button': "Analyser le texte",
'repeated_words': "Mots répétés",
'legend': "Légende : Catégories grammaticales",
'arc_diagram': "Analyse syntaxique : Diagramme en arc",
'sentence': "Phrase"
}
}
t = translations[lang_code]
input_key = f"morphosyntax_input_{lang_code}"
# Inicializar la clave en session_state si no existe
if input_key not in st.session_state:
st.session_state[input_key] = ""
# Función para actualizar el estado del input
def update_input():
st.session_state[input_key] = st.session_state[f"text_area_{lang_code}"]
sentence_input = st.text_area(
t['input_label'],
height=150,
placeholder=t['input_placeholder'],
value=st.session_state[input_key],
key=f"text_area_{lang_code}",
on_change=update_input
)
if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"):
current_input = st.session_state[input_key]
if current_input:
doc = nlp_models[lang_code](current_input)
word_colors = get_repeated_words_colors(doc)
with st.expander(t['repeated_words'], expanded=True):
highlighted_text = highlight_repeated_words(doc, word_colors)
st.markdown(highlighted_text, unsafe_allow_html=True)
st.markdown(f"##### {t['legend']}")
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
for pos, color in POS_COLORS.items():
if pos in POS_TRANSLATIONS[lang_code]:
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
legend_html += "</div>"
st.markdown(legend_html, unsafe_allow_html=True)
with st.expander(t['arc_diagram'], expanded=True):
sentences = list(doc.sents)
arc_diagrams = []
for i, sent in enumerate(sentences):
st.subheader(f"{t['sentence']} {i+1}")
html = displacy.render(sent, style="dep", options={"distance": 100})
html = html.replace('height="375"', 'height="200"')
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
st.write(html, unsafe_allow_html=True)
arc_diagrams.append(html)
if store_morphosyntax_result(
st.session_state.username,
current_input,
word_colors,
arc_diagrams,
):
st.success("Análisis guardado correctamente.")
else:
st.error("Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.")
else:
st.warning("Por favor, ingrese un texto para analizar.")
###############################################################################################################
def display_semantic_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis semántico",
'file_uploader': "Cargar archivo de texto",
'analyze_button': "Analizar texto",
'semantic_relations': "Relaciones Semánticas Relevantes",
},
'en': {
'title': "AIdeaText - Semantic Analysis",
'file_uploader': "Upload text file",
'analyze_button': "Analyze text",
'semantic_relations': "Relevant Semantic Relations",
},
'fr': {
'title': "AIdeaText - Analyse sémantique",
'file_uploader': "Télécharger le fichier texte",
'analyze_button': "Analyser le texte",
'semantic_relations': "Relations Sémantiques Pertinentes",
}
}
t = translations[lang_code]
st.header(t['title'])
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
if uploaded_file is not None:
text_content = uploaded_file.getvalue().decode('utf-8')
if st.button(t['analyze_button']):
relations_graph = perform_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
with st.expander(t['semantic_relations'], expanded=True):
st.pyplot(relations_graph)
##################################################################################################
def display_discourse_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis del discurso",
'file_uploader1': "Cargar archivo de texto 1 (Patrón)",
'file_uploader2': "Cargar archivo de texto 2 (Comparación)",
'analyze_button': "Analizar textos",
'comparison': "Comparación de Relaciones Semánticas",
},
'en': {
'title': "AIdeaText - Discourse Analysis",
'file_uploader1': "Upload text file 1 (Pattern)",
'file_uploader2': "Upload text file 2 (Comparison)",
'analyze_button': "Analyze texts",
'comparison': "Comparison of Semantic Relations",
},
'fr': {
'title': "AIdeaText - Analyse du discours",
'file_uploader1': "Télécharger le fichier texte 1 (Modèle)",
'file_uploader2': "Télécharger le fichier texte 2 (Comparaison)",
'analyze_button': "Analyser les textes",
'comparison': "Comparaison des Relations Sémantiques",
}
}
t = translations[lang_code]
st.header(t['title'])
col1, col2 = st.columns(2)
with col1:
uploaded_file1 = st.file_uploader(t['file_uploader1'], type=['txt'])
with col2:
uploaded_file2 = st.file_uploader(t['file_uploader2'], type=['txt'])
if uploaded_file1 is not None and uploaded_file2 is not None:
text_content1 = uploaded_file1.getvalue().decode('utf-8')
text_content2 = uploaded_file2.getvalue().decode('utf-8')
if st.button(t['analyze_button']):
graph1, graph2 = perform_discourse_analysis(text_content1, text_content2, nlp_models[lang_code], lang_code)
st.subheader(t['comparison'])
col1, col2 = st.columns(2)
with col1:
st.pyplot(graph1)
with col2:
st.pyplot(graph2)
##################################################################################################
def display_chatbot_interface(lang_code):
translations = {
'es': {
'title': "Expertos en Vacaciones",
'input_placeholder': "Escribe tu mensaje aquí...",
'initial_message': "¡Hola! ¿Cómo podemos ayudarte?"
},
'en': {
'title': "Vacation Experts",
'input_placeholder': "Type your message here...",
'initial_message': "Hi! How can we help you?"
},
'fr': {
'title': "Experts en Vacances",
'input_placeholder': "Écrivez votre message ici...",
'initial_message': "Bonjour! Comment pouvons-nous vous aider?"
}
}
t = translations[lang_code]
st.title(t['title'])
if 'chatbot' not in st.session_state:
st.session_state.chatbot = initialize_chatbot()
if 'messages' not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": t['initial_message']}]
# Contenedor principal para el chat
chat_container = st.container()
# Mostrar mensajes existentes
with chat_container:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Área de entrada del usuario
user_input = st.chat_input(t['input_placeholder'])
if user_input:
# Agregar mensaje del usuario
st.session_state.messages.append({"role": "user", "content": user_input})
# Mostrar mensaje del usuario
with chat_container:
with st.chat_message("user"):
st.markdown(user_input)
# Generar respuesta del chatbot
with chat_container:
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for chunk in get_chatbot_response(st.session_state.chatbot, user_input, lang_code):
full_response += chunk
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
# Agregar respuesta del asistente a los mensajes
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Guardar la conversación en la base de datos
store_chat_history(st.session_state.username, st.session_state.messages)
# Scroll al final del chat
st.markdown('<script>window.scrollTo(0,document.body.scrollHeight);</script>', unsafe_allow_html=True)
######################################################
if __name__ == "__main__":
main() |