File size: 14,962 Bytes
50415aa
 
0c9d53d
 
 
50415aa
 
 
0c9d53d
 
2ca41dc
 
75d1d28
 
0e7a4d1
50415aa
0c9d53d
50415aa
 
0c9d53d
bccdc30
0c9d53d
 
 
 
 
50415aa
0c9d53d
50415aa
71da918
50415aa
192c8f0
 
 
 
 
 
 
5dc0420
0c9d53d
a051e9f
0c9d53d
 
 
 
196792a
 
 
0c9d53d
 
 
 
 
 
916f908
0c9d53d
196792a
0c9d53d
 
 
 
 
 
5dc0420
50415aa
d625c83
50415aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9d53d
 
71da918
 
 
 
50415aa
 
 
 
 
 
 
a92bc8b
549602b
196792a
549602b
75d1d28
196792a
 
 
 
 
549602b
75d1d28
549602b
 
 
 
 
 
 
 
 
 
196792a
549602b
a92bc8b
549602b
a92bc8b
549602b
 
 
 
 
 
5dc0420
0c9d53d
 
 
 
 
db3b38c
 
 
 
 
 
0c9d53d
db3b38c
0c9d53d
 
ecfbece
 
bccdc30
ecfbece
bccdc30
 
 
 
916f908
bccdc30
916f908
 
 
 
 
 
 
 
 
ecfbece
 
 
 
 
916f908
0be357e
bcf68d2
0c9d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf68d2
 
 
 
 
69a80eb
 
 
 
 
 
bcf68d2
 
 
 
69a80eb
bcf68d2
 
 
 
 
 
 
 
 
 
 
 
d37f895
 
55ffd71
d37f895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ffd71
 
 
d37f895
 
 
55ffd71
 
d37f895
55ffd71
d37f895
55ffd71
 
 
 
 
9633a42
 
 
 
fbfa0b3
 
 
9633a42
 
 
 
 
 
 
71da918
9633a42
 
 
62f300e
 
 
 
71da918
62f300e
 
 
71da918
 
 
 
 
 
 
 
 
 
62f300e
71da918
62f300e
 
 
 
3e13b48
 
62f300e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71da918
 
 
 
 
 
 
 
 
 
 
 
 
62f300e
71da918
 
62f300e
71da918
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# database.py
import logging
import os
from azure.cosmos import CosmosClient
from azure.cosmos.exceptions import CosmosHttpResponseError
from pymongo import MongoClient
import certifi
from datetime import datetime
import io
import base64
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import bcrypt
print(f"Bcrypt version: {bcrypt.__version__}")
import uuid

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Variables globales para Cosmos DB SQL API
application_requests_container = None
cosmos_client = None
user_database = None
user_container = None

# Variables globales para Cosmos DB MongoDB API
mongo_client = None
mongo_db = None
analysis_collection = None
chat_collection = None  # Nueva variable global


#####################################################################################33
def initialize_database_connections():
    mongodb_success = initialize_mongodb_connection()
    sql_success = initialize_cosmos_sql_connection()
    return mongodb_success and sql_success

#####################################################################################33
def initialize_cosmos_sql_connection():
    global cosmos_client, user_database, user_container, application_requests_container
    try:
        cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT")
        cosmos_key = os.environ.get("COSMOS_KEY")

        print(f"Cosmos Endpoint: {cosmos_endpoint}")
        print(f"Cosmos Key: {'*' * len(cosmos_key) if cosmos_key else 'Not set'}")

        if not cosmos_endpoint or not cosmos_key:
            raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas")

        cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key)
        user_database = cosmos_client.get_database_client("user_database")
        user_container = user_database.get_container_client("users")
        application_requests_container = user_database.get_container_client("application_requests")
        
        print(f"user_container initialized: {user_container is not None}")
        logger.info("Conexión a Cosmos DB SQL API exitosa")
        return True
    except Exception as e:
        logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}")
        return False

############################################################################################3        
def initialize_mongodb_connection():
    global mongo_client, mongo_db, analysis_collection, chat_collection
    try:
        cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING")
        if not cosmos_mongodb_connection_string:
            logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada")
            return False

        mongo_client = MongoClient(cosmos_mongodb_connection_string,
                                   tls=True,
                                   tlsCAFile=certifi.where(),
                                   retryWrites=False,
                                   serverSelectionTimeoutMS=5000,
                                   connectTimeoutMS=10000,
                                   socketTimeoutMS=10000)

        mongo_client.admin.command('ping')
        
        mongo_db = mongo_client['aideatext_db']
        analysis_collection = mongo_db['text_analysis']
        chat_collection = mongo_db['chat_history']  # Inicializar la nueva colección

        # Verificar la conexión
        mongo_client.admin.command('ping')
        
        logger.info("Conexión a Cosmos DB MongoDB API exitosa")
        return True
    except Exception as e:
        logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True)
        return False

#######################################################################################################
def create_user(username, password, role):
    global user_container
    try:
        print(f"Attempting to create user: {username} with role: {role}")
        if user_container is None:
            print("Error: user_container is None. Attempting to reinitialize connection.")
            if not initialize_cosmos_sql_connection():
                raise Exception("Failed to initialize SQL connection")
        
        hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
        print(f"Password hashed successfully for user: {username}")
        user_data = {
            'id': username,
            'password': hashed_password,
            'role': role,
            'created_at': datetime.utcnow().isoformat()
        }
        user_container.create_item(body=user_data)
        print(f"Usuario {role} creado: {username}")  # Log para depuración
        return True
    except Exception as e:
        print(f"Detailed error in create_user: {str(e)}")
        return False

#######################################################################################################
def create_admin_user(username, password):
    return create_user(username, password, 'Administrador')
    
#######################################################################################################
def create_student_user(username, password):
    return create_user(username, password, 'Estudiante')
       
#######################################################################################################
# Funciones para Cosmos DB SQL API (manejo de usuarios)
def get_user(username):
    try:
        query = f"SELECT * FROM c WHERE c.id = '{username}'"
        items = list(user_container.query_items(query=query, enable_cross_partition_query=True))
        user = items[0] if items else None
        if user:
            print(f"Usuario encontrado: {username}, Rol: {user.get('role')}")  # Log añadido
        else:
            print(f"Usuario no encontrado: {username}")  # Log añadido
        return user
    except Exception as e:
        print(f"Error al obtener usuario {username}: {str(e)}")
        return None

#######################################################################################################
def store_application_request(name, email, institution, role, reason):
    global application_requests_container
    try:
        if application_requests_container is None:
            logger.error("application_requests_container is not initialized")
            return False
        
        application_request = {
            "id": str(uuid.uuid4()),
            "name": name,
            "email": email,
            "institution": institution,
            "role": role,
            "reason": reason,
            "requestDate": datetime.utcnow().isoformat()
        }
        
        application_requests_container.create_item(body=application_request)
        logger.info(f"Application request stored for email: {email}")
        return True
    except Exception as e:
        logger.error(f"Error storing application request: {str(e)}")
        return False
        
#######################################################################################################
def store_morphosyntax_result(username, text, repeated_words, arc_diagrams):
    if analysis_collection is None:
        logger.error("La conexión a MongoDB no está inicializada")
        return False

    try:
        word_count = {}
        for word, color in repeated_words.items():
            category = color  # Asumiendo que 'color' es la categoría gramatical
            word_count[category] = word_count.get(category, 0) + 1

        analysis_document = {
            'username': username,
            'timestamp': datetime.utcnow(),
            'text': text,
            'word_count': word_count,
            'arc_diagrams': arc_diagrams,
        }

        result = analysis_collection.insert_one(analysis_document)

        logger.info(f"Análisis guardado con ID: {result.inserted_id} para el usuario: {username}")
        return True
    except Exception as e:
        logger.error(f"Error al guardar el análisis para el usuario {username}: {str(e)}")
        return False

################################################################################################################
def store_semantic_result(username, text, network_diagram):
    try:
        # Convertir la figura a una imagen base64
        buf = io.BytesIO()
        network_diagram.savefig(buf, format='png')
        buf.seek(0)
        img_str = base64.b64encode(buf.getvalue()).decode('utf-8')

        analysis_document = {
            'username': username,
            'timestamp': datetime.utcnow(),
            'text': text,
            'network_diagram': img_str,  # Guardar la imagen como string base64
            'analysis_type': 'semantic'
        }

        result = analysis_collection.insert_one(analysis_document)

        logger.info(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}")
        return True
    except Exception as e:
        logger.error(f"Error al guardar el análisis semántico para el usuario {username}: {str(e)}")
        return False

###############################################################################################################

def store_discourse_analysis_result(username, text1, text2, graph1, graph2):
    try:
        # Crear una nueva figura combinada
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))

        # Añadir la primera imagen con título
        ax1.imshow(graph1.get_figure().canvas.renderer.buffer_rgba())
        ax1.set_title("Documento Patrón: Relaciones semánticas relevantes")
        ax1.axis('off')

        # Añadir la segunda imagen con título
        ax2.imshow(graph2.get_figure().canvas.renderer.buffer_rgba())
        ax2.set_title("Documento Comparado con el documento patrón: Relaciones semánticas relevantes")
        ax2.axis('off')

        # Ajustar el diseño
        plt.tight_layout()

        # Convertir la figura combinada a una imagen base64
        buf = io.BytesIO()
        fig.savefig(buf, format='png')
        buf.seek(0)
        img_str = base64.b64encode(buf.getvalue()).decode('utf-8')

        # Cerrar las figuras para liberar memoria
        plt.close(fig)
        plt.close(graph1.get_figure())
        plt.close(graph2.get_figure())

        analysis_document = {
            'username': username,
            'timestamp': datetime.utcnow(),
            'text1': text1,
            'text2': text2,
            'combined_graph': img_str,
            'analysis_type': 'discourse'
        }

        result = analysis_collection.insert_one(analysis_document)

        logger.info(f"Análisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}")
        return True
    except Exception as e:
        logger.error(f"Error al guardar el análisis discursivo para el usuario {username}: {str(e)}")
        return False

###############################################################################################################
def store_chat_history(username, messages):
    try:
        logger.info(f"Attempting to save chat history for user: {username}")
        logger.debug(f"Messages to save: {messages}")
        
        chat_document = {
            'username': username,
            'timestamp': datetime.utcnow(),
            'messages': messages
        }
        result = chat_collection.insert_one(chat_document)
        logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}")
        logger.debug(f"Chat content: {messages}")
        return True
    except Exception as e:
        logger.error(f"Error saving chat history for user {username}: {str(e)}")
        return False

#######################################################################################################
def get_student_data(username):
    if analysis_collection is None or chat_collection is None:
        logger.error("La conexión a MongoDB no está inicializada")
        return None

    formatted_data = {
        "username": username,
        "entries": [],
        "entries_count": 0,
        "word_count": {},
        "semantic_analyses": [],
        "discourse_analyses": [],
        "chat_history": []
    }

    try:
        logger.info(f"Buscando datos de análisis para el usuario: {username}")
        cursor = analysis_collection.find({"username": username})
        
        for entry in cursor:
            formatted_entry = {
                "timestamp": entry.get("timestamp", datetime.utcnow()),
                "text": entry.get("text", ""),
                "analysis_type": entry.get("analysis_type", "morphosyntax")
            }
            
            if formatted_entry["analysis_type"] == "morphosyntax":
                formatted_entry.update({
                    "word_count": entry.get("word_count", {}),
                    "arc_diagrams": entry.get("arc_diagrams", [])
                })
                for category, count in formatted_entry["word_count"].items():
                    formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count
            
            elif formatted_entry["analysis_type"] == "semantic":
                formatted_entry["network_diagram"] = entry.get("network_diagram", "")
                formatted_data["semantic_analyses"].append(formatted_entry)
            
            elif formatted_entry["analysis_type"] == "discourse":
                formatted_entry.update({
                    "text1": entry.get("text1", ""),
                    "text2": entry.get("text2", ""),
                    "combined_graph": entry.get("combined_graph", "")
                })
                formatted_data["discourse_analyses"].append(formatted_entry)
            
            formatted_data["entries"].append(formatted_entry)
        
        formatted_data["entries_count"] = len(formatted_data["entries"])
        formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True)
        
        for entry in formatted_data["entries"]:
            entry["timestamp"] = entry["timestamp"].isoformat()
    
    except Exception as e:
        logger.error(f"Error al obtener datos de análisis del estudiante {username}: {str(e)}")
    
    try:
        logger.info(f"Buscando historial de chat para el usuario: {username}")
        chat_cursor = chat_collection.find({"username": username})
        for chat in chat_cursor:
            formatted_chat = {
                "timestamp": chat["timestamp"].isoformat(),
                "messages": chat["messages"]
            }
            formatted_data["chat_history"].append(formatted_chat)
        
        formatted_data["chat_history"].sort(key=lambda x: x["timestamp"], reverse=True)
    
    except Exception as e:
        logger.error(f"Error al obtener historial de chat del estudiante {username}: {str(e)}")

    logger.info(f"Datos formateados para {username}: {formatted_data}")
    return formatted_data