File size: 7,874 Bytes
738b9a7 355f3ac 6bf8d03 e031c18 0e46985 e031c18 0e46985 e031c18 bd04299 738b9a7 eece828 6a23e42 7dcf2f9 eece828 738b9a7 7dcf2f9 eece828 738b9a7 eece828 738b9a7 eece828 738b9a7 eece828 738b9a7 eece828 738b9a7 eece828 7dcf2f9 738b9a7 90f97d8 7dcf2f9 738b9a7 eece828 738b9a7 7dcf2f9 738b9a7 90f97d8 738b9a7 eece828 738b9a7 90f97d8 e031c18 738b9a7 e031c18 90f97d8 e031c18 90f97d8 e031c18 eece828 e031c18 90f97d8 738b9a7 e031c18 eece828 738b9a7 eece828 738b9a7 7dcf2f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
# Remove the global nlp model loading
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', # Light Salmon
'ADP': '#98FB98', # Pale Green
'ADV': '#87CEFA', # Light Sky Blue
'AUX': '#DDA0DD', # Plum
'CCONJ': '#F0E68C', # Khaki
'DET': '#FFB6C1', # Light Pink
'INTJ': '#FF6347', # Tomato
'NOUN': '#90EE90', # Light Green
'NUM': '#FAFAD2', # Light Goldenrod Yellow
'PART': '#D3D3D3', # Light Gray
'PRON': '#FFA500', # Orange
'PROPN': '#20B2AA', # Light Sea Green
'SCONJ': '#DEB887', # Burlywood
'SYM': '#7B68EE', # Medium Slate Blue
'VERB': '#FF69B4', # Hot Pink
'X': '#A9A9A9', # Dark Gray
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo',
'ADP': 'Adposici贸n',
'ADV': 'Adverbio',
'AUX': 'Auxiliar',
'CCONJ': 'Conjunci贸n Coordinante',
'DET': 'Determinante',
'INTJ': 'Interjecci贸n',
'NOUN': 'Sustantivo',
'NUM': 'N煤mero',
'PART': 'Part铆cula',
'PRON': 'Pronombre',
'PROPN': 'Nombre Propio',
'SCONJ': 'Conjunci贸n Subordinante',
'SYM': 'S铆mbolo',
'VERB': 'Verbo',
'X': 'Otro',
},
'en': {
'ADJ': 'Adjective',
'ADP': 'Adposition',
'ADV': 'Adverb',
'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction',
'DET': 'Determiner',
'INTJ': 'Interjection',
'NOUN': 'Noun',
'NUM': 'Number',
'PART': 'Particle',
'PRON': 'Pronoun',
'PROPN': 'Proper Noun',
'SCONJ': 'Subordinating Conjunction',
'SYM': 'Symbol',
'VERB': 'Verb',
'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif',
'ADP': 'Adposition',
'ADV': 'Adverbe',
'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination',
'DET': 'D茅terminant',
'INTJ': 'Interjection',
'NOUN': 'Nom',
'NUM': 'Nombre',
'PART': 'Particule',
'PRON': 'Pronom',
'PROPN': 'Nom Propre',
'SCONJ': 'Conjonction de Subordination',
'SYM': 'Symbole',
'VERB': 'Verbe',
'X': 'Autre',
}
}
########################################################################################################################################
# Definimos las etiquetas y colores para cada idioma
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Conceptos": "lightgreen",
"Lugares": "lightcoral",
"Fechas": "lightyellow"
},
'en': {
"People": "lightblue",
"Concepts": "lightgreen",
"Places": "lightcoral",
"Dates": "lightyellow"
},
'fr': {
"Personnes": "lightblue",
"Concepts": "lightgreen",
"Lieux": "lightcoral",
"Dates": "lightyellow"
}
}
#########################################################################################################
def count_pos(doc):
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
# Mant茅n las definiciones de POS_COLORS y POS_TRANSLATIONS que ya tienes
#############################################################################################################################
def extract_entities(doc, lang):
entities = {label: [] for label in ENTITY_LABELS[lang].keys()}
for ent in doc.ents:
if ent.label_ == "PERSON":
entities[list(ENTITY_LABELS[lang].keys())[0]].append(ent.text)
elif ent.label_ in ["LOC", "GPE"]:
entities[list(ENTITY_LABELS[lang].keys())[2]].append(ent.text)
elif ent.label_ == "DATE":
entities[list(ENTITY_LABELS[lang].keys())[3]].append(ent.text)
else:
entities[list(ENTITY_LABELS[lang].keys())[1]].append(ent.text)
return entities
#####################################################################################################################
def visualize_context_graph(doc, lang):
G = nx.Graph()
entities = extract_entities(doc, lang)
color_map = ENTITY_LABELS[lang]
# Add nodes
for category, items in entities.items():
for item in items:
G.add_node(item, category=category)
# Add edges
for sent in doc.sents:
sent_entities = [ent for ent in sent.ents if ent.text in G.nodes()]
for i in range(len(sent_entities)):
for j in range(i+1, len(sent_entities)):
G.add_edge(sent_entities[i].text, sent_entities[j].text)
# Visualize
plt.figure(figsize=(20, 15))
pos = nx.spring_layout(G, k=0.5, iterations=50)
node_colors = [color_map[G.nodes[node]['category']] for node in G.nodes()]
nx.draw(G, pos, node_color=node_colors, with_labels=True, node_size=5000,
font_size=12, font_weight='bold')
# Add a legend
legend_elements = [plt.Rectangle((0,0),1,1,fc=color, edgecolor='none', label=category)
for category, color in color_map.items()]
plt.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(1, 1))
plt.title("An谩lisis del Contexto" if lang == 'es' else "Context Analysis" if lang == 'en' else "Analyse du Contexte", fontsize=20)
plt.axis('off')
return plt
############################################################################################################################################
def visualize_semantic_relations(doc, lang):
G = nx.Graph()
word_freq = Counter(token.text.lower() for token in doc if token.pos_ not in ['PUNCT', 'SPACE'])
top_words = [word for word, _ in word_freq.most_common(20)] # Top 20 most frequent words
for token in doc:
if token.text.lower() in top_words:
G.add_node(token.text, pos=token.pos_)
for token in doc:
if token.text.lower() in top_words and token.head.text.lower() in top_words:
G.add_edge(token.text, token.head.text, label=token.dep_)
plt.figure(figsize=(24, 18))
pos = nx.spring_layout(G, k=0.9, iterations=50)
node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]
nx.draw(G, pos, node_color=node_colors, with_labels=True,
font_size=10, font_weight='bold', arrows=True, arrowsize=20, width=2, edge_color='gray')
edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
title = {
'es': "Relaciones Sem谩nticas Relevantes",
'en': "Relevant Semantic Relations",
'fr': "Relations S茅mantiques Pertinentes"
}
plt.title(title[lang], fontsize=20, fontweight='bold')
plt.axis('off')
legend_elements = [plt.Rectangle((0,0),1,1, facecolor=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
for pos in set(nx.get_node_attributes(G, 'pos').values())]
plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12)
return plt
############################################################################################################################################
def perform_semantic_analysis(text, nlp, lang):
doc = nlp(text)
# Imprimir entidades para depuraci贸n
print(f"Entidades encontradas ({lang}):")
for ent in doc.ents:
print(f"{ent.text} - {ent.label_}")
context_graph = visualize_context_graph(doc, lang)
relations_graph = visualize_semantic_relations(doc, lang)
return context_graph, relations_graph |