|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
from collections import defaultdict |
|
from .semantic_analysis import ( |
|
create_concept_graph, |
|
visualize_concept_graph, |
|
identify_key_concepts, |
|
POS_COLORS, |
|
POS_TRANSLATIONS, |
|
ENTITY_LABELS |
|
) |
|
|
|
def compare_semantic_analysis(text1, text2, nlp, lang): |
|
doc1 = nlp(text1) |
|
doc2 = nlp(text2) |
|
|
|
|
|
entities1, key_concepts1 = identify_and_contextualize_entities(doc1, lang) |
|
entities2, key_concepts2 = identify_and_contextualize_entities(doc2, lang) |
|
|
|
|
|
concepts1 = [concept for concept, _ in key_concepts1] |
|
concepts2 = [concept for concept, _ in key_concepts2] |
|
G1 = create_concept_graph(text1, concepts1) |
|
G2 = create_concept_graph(text2, concepts2) |
|
|
|
|
|
fig1 = visualize_concept_graph(G1, lang) |
|
fig2 = visualize_concept_graph(G2, lang) |
|
|
|
|
|
fig1.suptitle("Documento 1: Relaciones Conceptuales", fontsize=16, fontweight='bold') |
|
fig2.suptitle("Documento 2: Relaciones Conceptuales", fontsize=16, fontweight='bold') |
|
|
|
return fig1, fig2, entities1, entities2, key_concepts1, key_concepts2 |
|
|
|
def perform_discourse_analysis(text1, text2, nlp, lang): |
|
graph1, graph2, entities1, entities2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang) |
|
|
|
|
|
|
|
|
|
return { |
|
'graph1': graph1, |
|
'graph2': graph2, |
|
'entities1': entities1, |
|
'entities2': entities2, |
|
'key_concepts1': key_concepts1, |
|
'key_concepts2': key_concepts2 |
|
} |