test2 / modules /text_analysis /discourse_analysis.py
AIdeaText's picture
Update modules/text_analysis/discourse_analysis.py
a2bd669 verified
raw
history blame
1.56 kB
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from .semantic_analysis import (
create_concept_graph,
visualize_concept_graph,
identify_key_concepts,
POS_COLORS,
POS_TRANSLATIONS,
ENTITY_LABELS
)
def compare_semantic_analysis(text1, text2, nlp, lang):
doc1 = nlp(text1)
doc2 = nlp(text2)
# Identificar conceptos clave para ambos documentos
key_concepts1 = identify_key_concepts(doc1)
key_concepts2 = identify_key_concepts(doc2)
# Crear grafos de conceptos para ambos documentos
G1 = create_concept_graph(doc1, key_concepts1)
G2 = create_concept_graph(doc2, key_concepts2)
# Visualizar los grafos de conceptos
fig1 = visualize_concept_graph(G1, lang)
fig2 = visualize_concept_graph(G2, lang)
# Añadir títulos específicos para cada documento
fig1.suptitle("Documento 1: Relaciones Conceptuales", fontsize=16, fontweight='bold')
fig2.suptitle("Documento 2: Relaciones Conceptuales", fontsize=16, fontweight='bold')
return fig1, fig2, key_concepts1, key_concepts2
def perform_discourse_analysis(text1, text2, nlp, lang):
graph1, graph2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang)
# Aquí puedes añadir más análisis de discurso si lo necesitas
# Por ejemplo, podrías comparar los conceptos clave entre los dos textos
return {
'graph1': graph1,
'graph2': graph2,
'key_concepts1': key_concepts1,
'key_concepts2': key_concepts2
}