test2 / modules /database /database.py
AIdeaText's picture
Update modules/database/database.py
e587251 verified
# database.py
import logging
import os
from azure.cosmos import CosmosClient
from azure.cosmos.exceptions import CosmosHttpResponseError
from pymongo import MongoClient
import certifi
from datetime import datetime
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import bcrypt
print(f"Bcrypt version: {bcrypt.__version__}")
import uuid
import plotly.graph_objects as go # Para manejar el diagrama de Sankey
import numpy as np # Puede ser necesario para algunas operaciones
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Variables globales para Cosmos DB SQL API
application_requests_container = None
cosmos_client = None
user_database = None
user_container = None
user_feedback_container = None
# Variables globales para Cosmos DB MongoDB API
mongo_client = None
mongo_db = None
analysis_collection = None
chat_collection = None # Nueva variable global
#####################################################################################33
def initialize_database_connections():
try:
print("Iniciando conexi贸n a MongoDB")
mongodb_success = initialize_mongodb_connection()
print(f"Conexi贸n a MongoDB: {'exitosa' if mongodb_success else 'fallida'}")
except Exception as e:
print(f"Error al conectar con MongoDB: {str(e)}")
mongodb_success = False
try:
print("Iniciando conexi贸n a Cosmos DB SQL API")
sql_success = initialize_cosmos_sql_connection()
print(f"Conexi贸n a Cosmos DB SQL API: {'exitosa' if sql_success else 'fallida'}")
except Exception as e:
print(f"Error al conectar con Cosmos DB SQL API: {str(e)}")
sql_success = False
return {
"mongodb": mongodb_success,
"cosmos_sql": sql_success
}
#####################################################################################33
def initialize_cosmos_sql_connection():
global cosmos_client, user_database, user_container, application_requests_container, user_feedback_container
logger.info("Initializing Cosmos DB SQL API connection")
try:
cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT")
cosmos_key = os.environ.get("COSMOS_KEY")
logger.info(f"Cosmos Endpoint: {cosmos_endpoint}")
logger.info(f"Cosmos Key: {'*' * len(cosmos_key) if cosmos_key else 'Not set'}")
if not cosmos_endpoint or not cosmos_key:
logger.error("COSMOS_ENDPOINT or COSMOS_KEY environment variables are not set")
raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas")
cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key)
user_database = cosmos_client.get_database_client("user_database")
user_container = user_database.get_container_client("users")
application_requests_container = user_database.get_container_client("application_requests")
user_feedback_container = user_database.get_container_client("user_feedback")
logger.info(f"user_container initialized: {user_container is not None}")
logger.info(f"application_requests_container initialized: {application_requests_container is not None}")
logger.info(f"user_feedback_container initialized: {user_feedback_container is not None}")
logger.info("Conexi贸n a Cosmos DB SQL API exitosa")
return True
except Exception as e:
logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}", exc_info=True)
return False
############################################################################################3
def initialize_mongodb_connection():
global mongo_client, mongo_db, analysis_collection, chat_collection
try:
cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING")
if not cosmos_mongodb_connection_string:
logger.error("La variable de entorno MONGODB_CONNECTION_STRING no est谩 configurada")
return False
mongo_client = MongoClient(cosmos_mongodb_connection_string,
tls=True,
tlsCAFile=certifi.where(),
retryWrites=False,
serverSelectionTimeoutMS=5000,
connectTimeoutMS=10000,
socketTimeoutMS=10000)
mongo_client.admin.command('ping')
mongo_db = mongo_client['aideatext_db']
analysis_collection = mongo_db['text_analysis']
chat_collection = mongo_db['chat_history'] # Inicializar la nueva colecci贸n
# Verificar la conexi贸n
mongo_client.admin.command('ping')
logger.info("Conexi贸n a Cosmos DB MongoDB API exitosa")
return True
except Exception as e:
logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True)
return False
#######################################################################################################
def create_user(username, password, role):
global user_container
try:
print(f"Attempting to create user: {username} with role: {role}")
if user_container is None:
print("Error: user_container is None. Attempting to reinitialize connection.")
if not initialize_cosmos_sql_connection():
raise Exception("Failed to initialize SQL connection")
hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
print(f"Password hashed successfully for user: {username}")
user_data = {
'id': username,
'password': hashed_password,
'role': role,
'created_at': datetime.utcnow().isoformat()
}
user_container.create_item(body=user_data)
print(f"Usuario {role} creado: {username}") # Log para depuraci贸n
return True
except Exception as e:
print(f"Detailed error in create_user: {str(e)}")
return False
#######################################################################################################
def create_admin_user(username, password):
return create_user(username, password, 'Administrador')
#######################################################################################################
def create_student_user(username, password):
return create_user(username, password, 'Estudiante')
#######################################################################################################
# Funciones para Cosmos DB SQL API (manejo de usuarios)
def get_user(username):
try:
query = f"SELECT * FROM c WHERE c.id = '{username}'"
items = list(user_container.query_items(query=query, enable_cross_partition_query=True))
user = items[0] if items else None
if user:
print(f"Usuario encontrado: {username}, Rol: {user.get('role')}") # Log a帽adido
else:
print(f"Usuario no encontrado: {username}") # Log a帽adido
return user
except Exception as e:
print(f"Error al obtener usuario {username}: {str(e)}")
return None
#######################################################################################################
def store_application_request(name, email, institution, role, reason):
global application_requests_container
logger.info("Entering store_application_request function")
try:
logger.info("Checking application_requests_container")
if application_requests_container is None:
logger.error("application_requests_container is not initialized")
return False
logger.info("Creating application request document")
application_request = {
"id": str(uuid.uuid4()),
"name": name,
"email": email,
"institution": institution,
"role": role,
"reason": reason,
"requestDate": datetime.utcnow().isoformat()
}
logger.info(f"Attempting to store document: {application_request}")
application_requests_container.create_item(body=application_request)
logger.info(f"Application request stored for email: {email}")
return True
except Exception as e:
logger.error(f"Error storing application request: {str(e)}")
return False
#######################################################################################################
def store_user_feedback(username, name, email, feedback):
global user_feedback_container
logger.info(f"Attempting to store user feedback for user: {username}")
try:
if user_feedback_container is None:
logger.error("user_feedback_container is not initialized")
return False
feedback_item = {
"id": str(uuid.uuid4()),
"username": username,
"name": name,
"email": email,
"feedback": feedback,
"timestamp": datetime.utcnow().isoformat()
}
result = user_feedback_container.create_item(body=feedback_item)
logger.info(f"User feedback stored with ID: {result['id']} for user: {username}")
return True
except Exception as e:
logger.error(f"Error storing user feedback for user {username}: {str(e)}")
return False
#######################################################################################################
def store_morphosyntax_result(username, text, repeated_words, arc_diagrams, pos_analysis, morphological_analysis, sentence_structure):
if analysis_collection is None:
logger.error("La conexi贸n a MongoDB no est谩 inicializada")
return False
try:
word_count = {}
for word, color in repeated_words.items():
category = color # Asumiendo que 'color' es la categor铆a gramatical
word_count[category] = word_count.get(category, 0) + 1
analysis_document = {
'username': username,
'timestamp': datetime.utcnow(),
'text': text,
'word_count': word_count,
'arc_diagrams': arc_diagrams,
'pos_analysis': pos_analysis,
'morphological_analysis': morphological_analysis,
'sentence_structure': sentence_structure
}
result = analysis_collection.insert_one(analysis_document)
logger.info(f"An谩lisis guardado con ID: {result.inserted_id} para el usuario: {username}")
return True
except Exception as e:
logger.error(f"Error al guardar el an谩lisis para el usuario {username}: {str(e)}")
return False
################################################################################################################
def store_semantic_result(username, text, analysis_result):
if analysis_collection is None:
print("La conexi贸n a MongoDB no est谩 inicializada")
return False
try:
# Convertir los conceptos clave a una lista de tuplas
key_concepts = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts']]
# Convertir el gr谩fico a imagen base64
buf = BytesIO()
analysis_result['relations_graph'].savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.getvalue()).decode('utf-8')
analysis_document = {
'username': username,
'timestamp': datetime.utcnow(),
'key_concepts': key_concepts,
'graph': img_str,
'analysis_type': 'semantic'
}
result = analysis_collection.insert_one(analysis_document)
print(f"An谩lisis sem谩ntico guardado con ID: {result.inserted_id} para el usuario: {username}")
return True
except Exception as e:
print(f"Error al guardar el an谩lisis sem谩ntico para el usuario {username}: {str(e)}")
return False
###############################################################################################################
def store_discourse_analysis_result(username, text1, text2, analysis_result):
if analysis_collection is None:
print("La conexi贸n a MongoDB no est谩 inicializada")
return False
try:
# Convertir los grafos individuales a im谩genes base64
buf1 = BytesIO()
analysis_result['graph1'].savefig(buf1, format='png')
buf1.seek(0)
img_str1 = base64.b64encode(buf1.getvalue()).decode('utf-8')
buf2 = BytesIO()
analysis_result['graph2'].savefig(buf2, format='png')
buf2.seek(0)
img_str2 = base64.b64encode(buf2.getvalue()).decode('utf-8')
# Crear una imagen combinada
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
ax1.imshow(plt.imread(BytesIO(base64.b64decode(img_str1))))
ax1.axis('off')
ax1.set_title("Documento 1: Relaciones Conceptuales")
ax2.imshow(plt.imread(BytesIO(base64.b64decode(img_str2))))
ax2.axis('off')
ax2.set_title("Documento 2: Relaciones Conceptuales")
buf_combined = BytesIO()
fig.savefig(buf_combined, format='png')
buf_combined.seek(0)
img_str_combined = base64.b64encode(buf_combined.getvalue()).decode('utf-8')
plt.close(fig)
# Convertir los conceptos clave a listas de tuplas
key_concepts1 = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts1']]
key_concepts2 = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts2']]
# Crear el documento para guardar
analysis_document = {
'username': username,
'timestamp': datetime.utcnow(),
#'text1': text1,
#'text2': text2,
'graph1': img_str1,
'graph2': img_str2,
'combined_graph': img_str_combined,
'key_concepts1': key_concepts1,
'key_concepts2': key_concepts2,
'analysis_type': 'discourse'
}
# Insertar el documento en la base de datos
result = analysis_collection.insert_one(analysis_document)
print(f"An谩lisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}")
return True
except Exception as e:
print(f"Error al guardar el an谩lisis discursivo para el usuario {username}: {str(e)}")
print(f"Tipo de excepci贸n: {type(e).__name__}")
print(f"Detalles de la excepci贸n: {e.args}")
return False
###############################################################################################################
def store_chat_history(username, messages):
try:
logger.info(f"Attempting to save chat history for user: {username}")
logger.debug(f"Messages to save: {messages}")
chat_document = {
'username': username,
'timestamp': datetime.utcnow(),
'messages': messages
}
result = chat_collection.insert_one(chat_document)
logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}")
logger.debug(f"Chat content: {messages}")
return True
except Exception as e:
logger.error(f"Error saving chat history for user {username}: {str(e)}")
return False
#######################################################################################################
def get_student_data(username):
if analysis_collection is None or chat_collection is None:
logger.error("La conexi贸n a MongoDB no est谩 inicializada")
return None
formatted_data = {
"username": username,
"entries": [],
"entries_count": 0,
"word_count": {},
"semantic_analyses": [],
"discourse_analyses": [],
"chat_history": []
}
try:
logger.info(f"Buscando datos de an谩lisis para el usuario: {username}")
cursor = analysis_collection.find({"username": username})
for entry in cursor:
formatted_entry = {
"timestamp": entry.get("timestamp", datetime.utcnow()),
"analysis_type": entry.get("analysis_type", "morphosyntax")
}
if formatted_entry["analysis_type"] == "morphosyntax":
formatted_entry.update({
"text": entry.get("text", ""),
"word_count": entry.get("word_count", {}),
"arc_diagrams": entry.get("arc_diagrams", [])
})
for category, count in formatted_entry["word_count"].items():
formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count
elif formatted_entry["analysis_type"] == "semantic":
formatted_entry.update({
"key_concepts": entry.get("key_concepts", []),
"graph": entry.get("graph", "")
})
formatted_data["semantic_analyses"].append(formatted_entry)
elif formatted_entry["analysis_type"] == "discourse":
formatted_entry.update({
"text1": entry.get("text1", ""),
"text2": entry.get("text2", ""),
"key_concepts1": entry.get("key_concepts1", []),
"key_concepts2": entry.get("key_concepts2", []),
"graph1": entry.get("graph1", ""),
"graph2": entry.get("graph2", ""),
"combined_graph": entry.get("combined_graph", "")
})
formatted_data["discourse_analyses"].append(formatted_entry)
formatted_data["entries"].append(formatted_entry)
formatted_data["entries_count"] = len(formatted_data["entries"])
formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True)
for entry in formatted_data["entries"]:
entry["timestamp"] = entry["timestamp"].isoformat()
except Exception as e:
logger.error(f"Error al obtener datos de an谩lisis del estudiante {username}: {str(e)}")
try:
logger.info(f"Buscando historial de chat para el usuario: {username}")
chat_cursor = chat_collection.find({"username": username})
for chat in chat_cursor:
formatted_chat = {
"timestamp": chat["timestamp"].isoformat(),
"messages": chat["messages"]
}
formatted_data["chat_history"].append(formatted_chat)
formatted_data["chat_history"].sort(key=lambda x: x["timestamp"], reverse=True)
except Exception as e:
logger.error(f"Error al obtener historial de chat del estudiante {username}: {str(e)}")
logger.info(f"Datos formateados para {username}: {formatted_data}")
return formatted_data