|
|
|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
from collections import Counter, defaultdict |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
|
|
POS_COLORS = { |
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', |
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', |
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', |
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', |
|
} |
|
|
|
POS_TRANSLATIONS = { |
|
'es': { |
|
'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', |
|
'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n', |
|
'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre', |
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo', |
|
'VERB': 'Verbo', 'X': 'Otro', |
|
}, |
|
'en': { |
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', |
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', |
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', |
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', |
|
'VERB': 'Verb', 'X': 'Other', |
|
}, |
|
'fr': { |
|
'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', |
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection', |
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', |
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', |
|
'VERB': 'Verbe', 'X': 'Autre', |
|
} |
|
} |
|
|
|
ENTITY_LABELS = { |
|
'es': { |
|
"Personas": "lightblue", |
|
"Lugares": "lightcoral", |
|
"Inventos": "lightgreen", |
|
"Fechas": "lightyellow", |
|
"Conceptos": "lightpink" |
|
}, |
|
'en': { |
|
"People": "lightblue", |
|
"Places": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
}, |
|
'fr': { |
|
"Personnes": "lightblue", |
|
"Lieux": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
} |
|
} |
|
|
|
def identify_and_contextualize_entities(doc, lang): |
|
entities = [] |
|
for ent in doc.ents: |
|
|
|
start = max(0, ent.start - 3) |
|
end = min(len(doc), ent.end + 3) |
|
context = doc[start:end].text |
|
|
|
|
|
if ent.label_ in ['PERSON', 'ORG']: |
|
category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes" |
|
elif ent.label_ in ['LOC', 'GPE']: |
|
category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux" |
|
elif ent.label_ in ['PRODUCT']: |
|
category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions" |
|
elif ent.label_ in ['DATE', 'TIME']: |
|
category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates" |
|
else: |
|
category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts" |
|
|
|
entities.append({ |
|
'text': ent.text, |
|
'label': category, |
|
'start': ent.start, |
|
'end': ent.end, |
|
'context': context |
|
}) |
|
|
|
|
|
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) |
|
key_concepts = word_freq.most_common(10) |
|
|
|
return entities, key_concepts |
|
|
|
def create_concept_graph(text, concepts): |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([text]) |
|
concept_vectors = vectorizer.transform(concepts) |
|
similarity_matrix = cosine_similarity(concept_vectors, concept_vectors) |
|
|
|
G = nx.Graph() |
|
for i, concept in enumerate(concepts): |
|
G.add_node(concept) |
|
for j in range(i+1, len(concepts)): |
|
if similarity_matrix[i][j] > 0.1: |
|
G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j]) |
|
|
|
return G |
|
|
|
def visualize_concept_graph(G, lang): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G) |
|
|
|
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) |
|
nx.draw_networkx_edges(G, pos, width=1, ax=ax) |
|
|
|
edge_labels = nx.get_edge_attributes(G, 'weight') |
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax) |
|
|
|
title = { |
|
'es': "Relaciones Conceptuales", |
|
'en': "Conceptual Relations", |
|
'fr': "Relations Conceptuelles" |
|
} |
|
ax.set_title(title[lang], fontsize=16) |
|
ax.axis('off') |
|
|
|
return fig |
|
|
|
def perform_semantic_analysis(text, nlp, lang): |
|
doc = nlp(text) |
|
|
|
|
|
entities, key_concepts = identify_and_contextualize_entities(doc, lang) |
|
|
|
|
|
concepts = [concept for concept, _ in key_concepts] |
|
concept_graph = create_concept_graph(text, concepts) |
|
relations_graph = visualize_concept_graph(concept_graph, lang) |
|
|
|
return { |
|
'entities': entities, |
|
'key_concepts': key_concepts, |
|
'relations_graph': relations_graph |
|
} |
|
|
|
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] |