Merge branch #AIdeaText/test' into 'AIdeaText/test2'
Browse files- app.py +0 -1
- modules/__init__.py +7 -4
- modules/database/database.py +24 -13
- modules/text_analysis/discourse_analysis.py +80 -45
- modules/text_analysis/semantic_analysis.py +76 -211
- modules/text_analysis/semantic_analysis_v0.py +264 -0
- modules/text_analysis/semantic_analysis_v00.py +153 -0
- modules/ui/ui.py +18 -30
app.py
CHANGED
@@ -18,7 +18,6 @@ from modules.auth.auth import authenticate_user, register_user
|
|
18 |
from modules.admin.admin_ui import admin_page
|
19 |
|
20 |
from modules.ui.ui import (
|
21 |
-
main,
|
22 |
login_register_page,
|
23 |
login_form,
|
24 |
display_morphosyntax_analysis_interface,
|
|
|
18 |
from modules.admin.admin_ui import admin_page
|
19 |
|
20 |
from modules.ui.ui import (
|
|
|
21 |
login_register_page,
|
22 |
login_form,
|
23 |
display_morphosyntax_analysis_interface,
|
modules/__init__.py
CHANGED
@@ -91,14 +91,17 @@ def morpho_analysis_functions():
|
|
91 |
|
92 |
def semantic_analysis_text_functions():
|
93 |
from modules.analysis_text.semantic_analysis import (
|
94 |
-
visualize_semantic_relations,
|
95 |
perform_semantic_analysis,
|
96 |
-
create_semantic_graph
|
|
|
97 |
)
|
98 |
return {
|
99 |
-
'visualize_semantic_relations': visualize_semantic_relations,
|
100 |
'perform_semantic_analysis': perform_semantic_analysis,
|
101 |
-
'create_semantic_graph': create_semantic_graph
|
|
|
|
|
102 |
}
|
103 |
|
104 |
def discourse_analysis_text_functions():
|
|
|
91 |
|
92 |
def semantic_analysis_text_functions():
|
93 |
from modules.analysis_text.semantic_analysis import (
|
94 |
+
#visualize_semantic_relations,
|
95 |
perform_semantic_analysis,
|
96 |
+
create_semantic_graph,
|
97 |
+
visualize_concept_graph,
|
98 |
)
|
99 |
return {
|
100 |
+
#'visualize_semantic_relations': visualize_semantic_relations,
|
101 |
'perform_semantic_analysis': perform_semantic_analysis,
|
102 |
+
'create_semantic_graph': create_semantic_graph,
|
103 |
+
'create_concept_graph': create_concept_graph,
|
104 |
+
'visualize_concept_graph': visualize_concept_graph,
|
105 |
}
|
106 |
|
107 |
def discourse_analysis_text_functions():
|
modules/database/database.py
CHANGED
@@ -256,20 +256,26 @@ def store_semantic_result(username, text, analysis_result):
|
|
256 |
if analysis_collection is None:
|
257 |
logger.error("La conexión a MongoDB no está inicializada")
|
258 |
return False
|
|
|
259 |
try:
|
|
|
260 |
buf = io.BytesIO()
|
261 |
analysis_result['relations_graph'].savefig(buf, format='png')
|
262 |
buf.seek(0)
|
263 |
img_str = base64.b64encode(buf.getvalue()).decode('utf-8')
|
|
|
|
|
|
|
|
|
264 |
analysis_document = {
|
265 |
'username': username,
|
266 |
'timestamp': datetime.utcnow(),
|
267 |
'text': text,
|
268 |
-
'
|
269 |
-
'
|
270 |
-
'network_diagram': img_str, # Cambiado de 'relations_graph' a 'network_diagram'
|
271 |
'analysis_type': 'semantic'
|
272 |
}
|
|
|
273 |
result = analysis_collection.insert_one(analysis_document)
|
274 |
logger.info(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}")
|
275 |
logger.info(f"Longitud de la imagen guardada: {len(img_str)}")
|
@@ -280,19 +286,19 @@ def store_semantic_result(username, text, analysis_result):
|
|
280 |
|
281 |
###############################################################################################################
|
282 |
|
283 |
-
def store_discourse_analysis_result(username, text1, text2,
|
284 |
try:
|
285 |
# Crear una nueva figura combinada
|
286 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
|
287 |
|
288 |
-
# Añadir la primera imagen
|
289 |
-
ax1.imshow(graph1.
|
290 |
-
ax1.set_title("Documento
|
291 |
ax1.axis('off')
|
292 |
|
293 |
-
# Añadir la segunda imagen
|
294 |
-
ax2.imshow(graph2.
|
295 |
-
ax2.set_title("Documento
|
296 |
ax2.axis('off')
|
297 |
|
298 |
# Ajustar el diseño
|
@@ -306,8 +312,12 @@ def store_discourse_analysis_result(username, text1, text2, graph1, graph2):
|
|
306 |
|
307 |
# Cerrar las figuras para liberar memoria
|
308 |
plt.close(fig)
|
309 |
-
plt.close(graph1
|
310 |
-
plt.close(graph2
|
|
|
|
|
|
|
|
|
311 |
|
312 |
analysis_document = {
|
313 |
'username': username,
|
@@ -315,11 +325,12 @@ def store_discourse_analysis_result(username, text1, text2, graph1, graph2):
|
|
315 |
'text1': text1,
|
316 |
'text2': text2,
|
317 |
'combined_graph': img_str,
|
|
|
|
|
318 |
'analysis_type': 'discourse'
|
319 |
}
|
320 |
|
321 |
result = analysis_collection.insert_one(analysis_document)
|
322 |
-
|
323 |
logger.info(f"Análisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}")
|
324 |
return True
|
325 |
except Exception as e:
|
|
|
256 |
if analysis_collection is None:
|
257 |
logger.error("La conexión a MongoDB no está inicializada")
|
258 |
return False
|
259 |
+
|
260 |
try:
|
261 |
+
# Convertir el gráfico a imagen base64
|
262 |
buf = io.BytesIO()
|
263 |
analysis_result['relations_graph'].savefig(buf, format='png')
|
264 |
buf.seek(0)
|
265 |
img_str = base64.b64encode(buf.getvalue()).decode('utf-8')
|
266 |
+
|
267 |
+
# Convertir los conceptos clave a una lista de tuplas
|
268 |
+
key_concepts = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts']]
|
269 |
+
|
270 |
analysis_document = {
|
271 |
'username': username,
|
272 |
'timestamp': datetime.utcnow(),
|
273 |
'text': text,
|
274 |
+
'key_concepts': key_concepts,
|
275 |
+
'network_diagram': img_str,
|
|
|
276 |
'analysis_type': 'semantic'
|
277 |
}
|
278 |
+
|
279 |
result = analysis_collection.insert_one(analysis_document)
|
280 |
logger.info(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}")
|
281 |
logger.info(f"Longitud de la imagen guardada: {len(img_str)}")
|
|
|
286 |
|
287 |
###############################################################################################################
|
288 |
|
289 |
+
def store_discourse_analysis_result(username, text1, text2, analysis_result):
|
290 |
try:
|
291 |
# Crear una nueva figura combinada
|
292 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
|
293 |
|
294 |
+
# Añadir la primera imagen
|
295 |
+
ax1.imshow(analysis_result['graph1'].canvas.renderer.buffer_rgba())
|
296 |
+
ax1.set_title("Documento 1: Relaciones Conceptuales")
|
297 |
ax1.axis('off')
|
298 |
|
299 |
+
# Añadir la segunda imagen
|
300 |
+
ax2.imshow(analysis_result['graph2'].canvas.renderer.buffer_rgba())
|
301 |
+
ax2.set_title("Documento 2: Relaciones Conceptuales")
|
302 |
ax2.axis('off')
|
303 |
|
304 |
# Ajustar el diseño
|
|
|
312 |
|
313 |
# Cerrar las figuras para liberar memoria
|
314 |
plt.close(fig)
|
315 |
+
plt.close(analysis_result['graph1'])
|
316 |
+
plt.close(analysis_result['graph2'])
|
317 |
+
|
318 |
+
# Convertir los conceptos clave a listas de tuplas
|
319 |
+
key_concepts1 = [(concept, float(frequency)) for concept, frequency in analysis_result['table1'].values.tolist()]
|
320 |
+
key_concepts2 = [(concept, float(frequency)) for concept, frequency in analysis_result['table2'].values.tolist()]
|
321 |
|
322 |
analysis_document = {
|
323 |
'username': username,
|
|
|
325 |
'text1': text1,
|
326 |
'text2': text2,
|
327 |
'combined_graph': img_str,
|
328 |
+
'key_concepts1': key_concepts1,
|
329 |
+
'key_concepts2': key_concepts2,
|
330 |
'analysis_type': 'discourse'
|
331 |
}
|
332 |
|
333 |
result = analysis_collection.insert_one(analysis_document)
|
|
|
334 |
logger.info(f"Análisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}")
|
335 |
return True
|
336 |
except Exception as e:
|
modules/text_analysis/discourse_analysis.py
CHANGED
@@ -2,53 +2,88 @@ import streamlit as st
|
|
2 |
import spacy
|
3 |
import networkx as nx
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
|
6 |
-
from .semantic_analysis import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
##################################################################################################################
|
9 |
def compare_semantic_analysis(text1, text2, nlp, lang):
|
10 |
doc1 = nlp(text1)
|
11 |
doc2 = nlp(text2)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
ax1.axis('off')
|
38 |
-
ax2.axis('off')
|
39 |
-
|
40 |
-
# Add legends
|
41 |
-
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
|
42 |
-
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
|
43 |
-
for pos in ['NOUN', 'VERB']]
|
44 |
-
ax1.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=8)
|
45 |
-
ax2.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=8)
|
46 |
-
|
47 |
-
plt.tight_layout()
|
48 |
-
|
49 |
-
return fig1, fig2
|
50 |
-
|
51 |
-
##################################################################################################################
|
52 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
53 |
-
graph1, graph2 = compare_semantic_analysis(text1, text2, nlp, lang)
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import spacy
|
3 |
import networkx as nx
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
from .semantic_analysis import (
|
7 |
+
create_concept_graph,
|
8 |
+
visualize_concept_graph,
|
9 |
+
identify_key_concepts,
|
10 |
+
POS_COLORS,
|
11 |
+
POS_TRANSLATIONS,
|
12 |
+
ENTITY_LABELS
|
13 |
+
)
|
14 |
|
|
|
15 |
def compare_semantic_analysis(text1, text2, nlp, lang):
|
16 |
doc1 = nlp(text1)
|
17 |
doc2 = nlp(text2)
|
18 |
+
|
19 |
+
# Identificar conceptos clave para ambos documentos
|
20 |
+
key_concepts1 = identify_key_concepts(doc1)
|
21 |
+
key_concepts2 = identify_key_concepts(doc2)
|
22 |
+
|
23 |
+
# Crear grafos de conceptos para ambos documentos
|
24 |
+
G1 = create_concept_graph(doc1, key_concepts1)
|
25 |
+
G2 = create_concept_graph(doc2, key_concepts2)
|
26 |
+
|
27 |
+
# Visualizar los grafos de conceptos
|
28 |
+
fig1 = visualize_concept_graph(G1, lang)
|
29 |
+
fig2 = visualize_concept_graph(G2, lang)
|
30 |
+
|
31 |
+
# Remover los títulos superpuestos
|
32 |
+
fig1.suptitle("")
|
33 |
+
fig2.suptitle("")
|
34 |
+
|
35 |
+
return fig1, fig2, key_concepts1, key_concepts2
|
36 |
+
|
37 |
+
def create_concept_table(key_concepts):
|
38 |
+
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
|
39 |
+
df['Frecuencia'] = df['Frecuencia'].round(2)
|
40 |
+
return df
|
41 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
43 |
+
graph1, graph2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang)
|
44 |
+
|
45 |
+
# Crear tablas de conceptos clave
|
46 |
+
table1 = create_concept_table(key_concepts1)
|
47 |
+
table2 = create_concept_table(key_concepts2)
|
48 |
+
|
49 |
+
return {
|
50 |
+
'graph1': graph1,
|
51 |
+
'graph2': graph2,
|
52 |
+
'table1': table1,
|
53 |
+
'table2': table2
|
54 |
+
}
|
55 |
+
|
56 |
+
def display_discourse_analysis_results(analysis_result, lang_code):
|
57 |
+
translations = {
|
58 |
+
'es': {
|
59 |
+
'doc1_title': "Documento 1: Relaciones Conceptuales",
|
60 |
+
'doc2_title': "Documento 2: Relaciones Conceptuales",
|
61 |
+
'key_concepts': "Conceptos Clave",
|
62 |
+
},
|
63 |
+
'en': {
|
64 |
+
'doc1_title': "Document 1: Conceptual Relations",
|
65 |
+
'doc2_title': "Document 2: Conceptual Relations",
|
66 |
+
'key_concepts': "Key Concepts",
|
67 |
+
},
|
68 |
+
'fr': {
|
69 |
+
'doc1_title': "Document 1 : Relations Conceptuelles",
|
70 |
+
'doc2_title': "Document 2 : Relations Conceptuelles",
|
71 |
+
'key_concepts': "Concepts Clés",
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
t = translations[lang_code]
|
76 |
+
|
77 |
+
col1, col2 = st.columns(2)
|
78 |
+
|
79 |
+
with col1:
|
80 |
+
with st.expander(t['doc1_title'], expanded=True):
|
81 |
+
st.pyplot(analysis_result['graph1'])
|
82 |
+
st.subheader(t['key_concepts'])
|
83 |
+
st.table(analysis_result['table1'])
|
84 |
+
|
85 |
+
with col2:
|
86 |
+
with st.expander(t['doc2_title'], expanded=True):
|
87 |
+
st.pyplot(analysis_result['graph2'])
|
88 |
+
st.subheader(t['key_concepts'])
|
89 |
+
st.table(analysis_result['table2'])
|
modules/text_analysis/semantic_analysis.py
CHANGED
@@ -3,260 +3,125 @@ import streamlit as st
|
|
3 |
import spacy
|
4 |
import networkx as nx
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
from collections import Counter
|
7 |
-
from
|
|
|
8 |
|
9 |
# Define colors for grammatical categories
|
10 |
POS_COLORS = {
|
11 |
-
'ADJ': '#FFA07A',
|
12 |
-
'
|
13 |
-
'
|
14 |
-
'
|
15 |
-
'CCONJ': '#F0E68C', # Khaki
|
16 |
-
'DET': '#FFB6C1', # Light Pink
|
17 |
-
'INTJ': '#FF6347', # Tomato
|
18 |
-
'NOUN': '#90EE90', # Light Green
|
19 |
-
'NUM': '#FAFAD2', # Light Goldenrod Yellow
|
20 |
-
'PART': '#D3D3D3', # Light Gray
|
21 |
-
'PRON': '#FFA500', # Orange
|
22 |
-
'PROPN': '#20B2AA', # Light Sea Green
|
23 |
-
'SCONJ': '#DEB887', # Burlywood
|
24 |
-
'SYM': '#7B68EE', # Medium Slate Blue
|
25 |
-
'VERB': '#FF69B4', # Hot Pink
|
26 |
-
'X': '#A9A9A9', # Dark Gray
|
27 |
}
|
28 |
|
29 |
POS_TRANSLATIONS = {
|
30 |
'es': {
|
31 |
-
'ADJ': 'Adjetivo',
|
32 |
-
'
|
33 |
-
'
|
34 |
-
'
|
35 |
-
'
|
36 |
-
'DET': 'Determinante',
|
37 |
-
'INTJ': 'Interjección',
|
38 |
-
'NOUN': 'Sustantivo',
|
39 |
-
'NUM': 'Número',
|
40 |
-
'PART': 'Partícula',
|
41 |
-
'PRON': 'Pronombre',
|
42 |
-
'PROPN': 'Nombre Propio',
|
43 |
-
'SCONJ': 'Conjunción Subordinante',
|
44 |
-
'SYM': 'Símbolo',
|
45 |
-
'VERB': 'Verbo',
|
46 |
-
'X': 'Otro',
|
47 |
},
|
48 |
'en': {
|
49 |
-
'ADJ': 'Adjective',
|
50 |
-
'
|
51 |
-
'
|
52 |
-
'
|
53 |
-
'
|
54 |
-
'DET': 'Determiner',
|
55 |
-
'INTJ': 'Interjection',
|
56 |
-
'NOUN': 'Noun',
|
57 |
-
'NUM': 'Number',
|
58 |
-
'PART': 'Particle',
|
59 |
-
'PRON': 'Pronoun',
|
60 |
-
'PROPN': 'Proper Noun',
|
61 |
-
'SCONJ': 'Subordinating Conjunction',
|
62 |
-
'SYM': 'Symbol',
|
63 |
-
'VERB': 'Verb',
|
64 |
-
'X': 'Other',
|
65 |
},
|
66 |
'fr': {
|
67 |
-
'ADJ': 'Adjectif',
|
68 |
-
'
|
69 |
-
'
|
70 |
-
'
|
71 |
-
'
|
72 |
-
'DET': 'Déterminant',
|
73 |
-
'INTJ': 'Interjection',
|
74 |
-
'NOUN': 'Nom',
|
75 |
-
'NUM': 'Nombre',
|
76 |
-
'PART': 'Particule',
|
77 |
-
'PRON': 'Pronom',
|
78 |
-
'PROPN': 'Nom Propre',
|
79 |
-
'SCONJ': 'Conjonction de Subordination',
|
80 |
-
'SYM': 'Symbole',
|
81 |
-
'VERB': 'Verbe',
|
82 |
-
'X': 'Autre',
|
83 |
}
|
84 |
}
|
85 |
-
########################################################################################################################################
|
86 |
|
87 |
-
# Definimos las etiquetas y colores para cada idioma
|
88 |
ENTITY_LABELS = {
|
89 |
'es': {
|
90 |
"Personas": "lightblue",
|
91 |
-
"Conceptos": "lightgreen",
|
92 |
"Lugares": "lightcoral",
|
93 |
-
"
|
|
|
|
|
94 |
},
|
95 |
'en': {
|
96 |
"People": "lightblue",
|
97 |
-
"Concepts": "lightgreen",
|
98 |
"Places": "lightcoral",
|
99 |
-
"
|
|
|
|
|
100 |
},
|
101 |
'fr': {
|
102 |
"Personnes": "lightblue",
|
103 |
-
"Concepts": "lightgreen",
|
104 |
"Lieux": "lightcoral",
|
105 |
-
"
|
|
|
|
|
106 |
}
|
107 |
}
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
def create_semantic_graph(doc, lang):
|
116 |
-
G = nx.Graph()
|
117 |
-
word_freq = defaultdict(int)
|
118 |
-
lemma_to_word = {}
|
119 |
-
lemma_to_pos = {}
|
120 |
-
|
121 |
-
# Count frequencies of lemmas and map lemmas to their most common word form and POS
|
122 |
-
for token in doc:
|
123 |
-
if token.pos_ in ['NOUN', 'VERB']:
|
124 |
-
lemma = token.lemma_.lower()
|
125 |
-
word_freq[lemma] += 1
|
126 |
-
if lemma not in lemma_to_word or token.text.lower() == lemma:
|
127 |
-
lemma_to_word[lemma] = token.text
|
128 |
-
lemma_to_pos[lemma] = token.pos_
|
129 |
-
|
130 |
-
# Get top 20 most frequent lemmas
|
131 |
-
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
|
132 |
-
|
133 |
-
# Add nodes
|
134 |
-
for lemma in top_lemmas:
|
135 |
-
word = lemma_to_word[lemma]
|
136 |
-
G.add_node(word, pos=lemma_to_pos[lemma])
|
137 |
-
|
138 |
-
# Add edges
|
139 |
-
for token in doc:
|
140 |
-
if token.lemma_.lower() in top_lemmas:
|
141 |
-
if token.head.lemma_.lower() in top_lemmas:
|
142 |
-
source = lemma_to_word[token.lemma_.lower()]
|
143 |
-
target = lemma_to_word[token.head.lemma_.lower()]
|
144 |
-
if source != target: # Avoid self-loops
|
145 |
-
G.add_edge(source, target, label=token.dep_)
|
146 |
-
|
147 |
-
return G, word_freq
|
148 |
-
|
149 |
-
############################################################################################################################################
|
150 |
-
|
151 |
-
def visualize_semantic_relations(doc, lang):
|
152 |
G = nx.Graph()
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
# Add nodes
|
170 |
-
for lemma in top_lemmas:
|
171 |
-
word = lemma_to_word[lemma]
|
172 |
-
G.add_node(word, pos=lemma_to_pos[lemma])
|
173 |
-
|
174 |
-
# Add edges
|
175 |
-
for token in doc:
|
176 |
-
if token.lemma_.lower() in top_lemmas:
|
177 |
-
if token.head.lemma_.lower() in top_lemmas:
|
178 |
-
source = lemma_to_word[token.lemma_.lower()]
|
179 |
-
target = lemma_to_word[token.head.lemma_.lower()]
|
180 |
-
if source != target: # Avoid self-loops
|
181 |
-
G.add_edge(source, target, label=token.dep_)
|
182 |
-
|
183 |
-
fig, ax = plt.subplots(figsize=(36, 27))
|
184 |
-
pos = nx.spring_layout(G, k=0.7, iterations=50)
|
185 |
-
|
186 |
-
node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]
|
187 |
-
|
188 |
-
nx.draw(G, pos, node_color=node_colors, with_labels=True,
|
189 |
-
node_size=10000,
|
190 |
-
font_size=16,
|
191 |
-
font_weight='bold',
|
192 |
-
arrows=True,
|
193 |
-
arrowsize=30,
|
194 |
-
width=3,
|
195 |
-
edge_color='gray',
|
196 |
-
ax=ax)
|
197 |
-
|
198 |
-
edge_labels = nx.get_edge_attributes(G, 'label')
|
199 |
-
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax)
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
title = {
|
202 |
-
'es': "Relaciones
|
203 |
-
'en': "
|
204 |
-
'fr': "Relations
|
205 |
}
|
206 |
-
ax.set_title(title[lang], fontsize=
|
207 |
ax.axis('off')
|
208 |
-
|
209 |
-
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
|
210 |
-
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
|
211 |
-
for pos in ['NOUN', 'VERB']]
|
212 |
-
ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16)
|
213 |
-
|
214 |
-
return fig
|
215 |
-
|
216 |
-
############################################################################################################################################
|
217 |
-
def identify_and_contextualize_entities(doc, lang):
|
218 |
-
entities = []
|
219 |
-
for ent in doc.ents:
|
220 |
-
# Obtener el contexto (3 palabras antes y después de la entidad)
|
221 |
-
start = max(0, ent.start - 3)
|
222 |
-
end = min(len(doc), ent.end + 3)
|
223 |
-
context = doc[start:end].text
|
224 |
-
|
225 |
-
entities.append({
|
226 |
-
'text': ent.text,
|
227 |
-
'label': ent.label_,
|
228 |
-
'start': ent.start,
|
229 |
-
'end': ent.end,
|
230 |
-
'context': context
|
231 |
-
})
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave
|
236 |
-
|
237 |
-
return entities, key_concepts
|
238 |
-
|
239 |
|
240 |
-
############################################################################################################################################
|
241 |
def perform_semantic_analysis(text, nlp, lang):
|
242 |
doc = nlp(text)
|
243 |
-
|
244 |
-
# Identificar entidades y conceptos clave
|
245 |
-
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
|
246 |
-
|
247 |
-
# Visualizar relaciones semánticas
|
248 |
-
relations_graph = visualize_semantic_relations(doc, lang)
|
249 |
|
250 |
-
#
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
254 |
|
255 |
-
relations_graph = visualize_semantic_relations(doc, lang)
|
256 |
return {
|
257 |
-
'entities': entities,
|
258 |
'key_concepts': key_concepts,
|
259 |
'relations_graph': relations_graph
|
260 |
}
|
261 |
|
262 |
-
__all__ = ['
|
|
|
3 |
import spacy
|
4 |
import networkx as nx
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
from collections import Counter, defaultdict
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
|
10 |
# Define colors for grammatical categories
|
11 |
POS_COLORS = {
|
12 |
+
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
13 |
+
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
14 |
+
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
15 |
+
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
17 |
|
18 |
POS_TRANSLATIONS = {
|
19 |
'es': {
|
20 |
+
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
21 |
+
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
|
22 |
+
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
|
23 |
+
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
|
24 |
+
'VERB': 'Verbo', 'X': 'Otro',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
},
|
26 |
'en': {
|
27 |
+
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
28 |
+
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
29 |
+
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
30 |
+
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
31 |
+
'VERB': 'Verb', 'X': 'Other',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
},
|
33 |
'fr': {
|
34 |
+
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
35 |
+
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
|
36 |
+
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
37 |
+
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
38 |
+
'VERB': 'Verbe', 'X': 'Autre',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
}
|
|
|
41 |
|
|
|
42 |
ENTITY_LABELS = {
|
43 |
'es': {
|
44 |
"Personas": "lightblue",
|
|
|
45 |
"Lugares": "lightcoral",
|
46 |
+
"Inventos": "lightgreen",
|
47 |
+
"Fechas": "lightyellow",
|
48 |
+
"Conceptos": "lightpink"
|
49 |
},
|
50 |
'en': {
|
51 |
"People": "lightblue",
|
|
|
52 |
"Places": "lightcoral",
|
53 |
+
"Inventions": "lightgreen",
|
54 |
+
"Dates": "lightyellow",
|
55 |
+
"Concepts": "lightpink"
|
56 |
},
|
57 |
'fr': {
|
58 |
"Personnes": "lightblue",
|
|
|
59 |
"Lieux": "lightcoral",
|
60 |
+
"Inventions": "lightgreen",
|
61 |
+
"Dates": "lightyellow",
|
62 |
+
"Concepts": "lightpink"
|
63 |
}
|
64 |
}
|
65 |
|
66 |
+
def identify_key_concepts(doc, top_n=10):
|
67 |
+
# Identificar sustantivos, verbos y adjetivos más frecuentes
|
68 |
+
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ'] and not token.is_stop])
|
69 |
+
return word_freq.most_common(top_n)
|
70 |
|
71 |
+
def create_concept_graph(doc, key_concepts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
G = nx.Graph()
|
73 |
+
|
74 |
+
# Añadir nodos
|
75 |
+
for concept, freq in key_concepts:
|
76 |
+
G.add_node(concept, weight=freq)
|
77 |
+
|
78 |
+
# Añadir aristas basadas en la co-ocurrencia en oraciones
|
79 |
+
for sent in doc.sents:
|
80 |
+
sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)]
|
81 |
+
for i, concept1 in enumerate(sent_concepts):
|
82 |
+
for concept2 in sent_concepts[i+1:]:
|
83 |
+
if G.has_edge(concept1, concept2):
|
84 |
+
G[concept1][concept2]['weight'] += 1
|
85 |
+
else:
|
86 |
+
G.add_edge(concept1, concept2, weight=1)
|
87 |
+
|
88 |
+
return G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
def visualize_concept_graph(G, lang):
|
91 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
92 |
+
pos = nx.spring_layout(G, k=0.5, iterations=50)
|
93 |
+
|
94 |
+
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
|
95 |
+
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax)
|
96 |
+
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
|
97 |
+
|
98 |
+
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
|
99 |
+
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
|
100 |
+
|
101 |
title = {
|
102 |
+
'es': "Relaciones entre Conceptos Clave",
|
103 |
+
'en': "Key Concept Relations",
|
104 |
+
'fr': "Relations entre Concepts Clés"
|
105 |
}
|
106 |
+
ax.set_title(title[lang], fontsize=16)
|
107 |
ax.axis('off')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
plt.tight_layout()
|
110 |
+
return fig
|
|
|
|
|
|
|
|
|
111 |
|
|
|
112 |
def perform_semantic_analysis(text, nlp, lang):
|
113 |
doc = nlp(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Identificar conceptos clave
|
116 |
+
key_concepts = identify_key_concepts(doc)
|
117 |
+
|
118 |
+
# Crear y visualizar grafo de conceptos
|
119 |
+
concept_graph = create_concept_graph(doc, key_concepts)
|
120 |
+
relations_graph = visualize_concept_graph(concept_graph, lang)
|
121 |
|
|
|
122 |
return {
|
|
|
123 |
'key_concepts': key_concepts,
|
124 |
'relations_graph': relations_graph
|
125 |
}
|
126 |
|
127 |
+
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS']
|
modules/text_analysis/semantic_analysis_v0.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#semantic_analysis.py
|
2 |
+
import streamlit as st
|
3 |
+
import spacy
|
4 |
+
import networkx as nx
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from collections import Counter
|
7 |
+
from collections import defaultdict
|
8 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
+
|
11 |
+
# Define colors for grammatical categories
|
12 |
+
POS_COLORS = {
|
13 |
+
'ADJ': '#FFA07A', # Light Salmon
|
14 |
+
'ADP': '#98FB98', # Pale Green
|
15 |
+
'ADV': '#87CEFA', # Light Sky Blue
|
16 |
+
'AUX': '#DDA0DD', # Plum
|
17 |
+
'CCONJ': '#F0E68C', # Khaki
|
18 |
+
'DET': '#FFB6C1', # Light Pink
|
19 |
+
'INTJ': '#FF6347', # Tomato
|
20 |
+
'NOUN': '#90EE90', # Light Green
|
21 |
+
'NUM': '#FAFAD2', # Light Goldenrod Yellow
|
22 |
+
'PART': '#D3D3D3', # Light Gray
|
23 |
+
'PRON': '#FFA500', # Orange
|
24 |
+
'PROPN': '#20B2AA', # Light Sea Green
|
25 |
+
'SCONJ': '#DEB887', # Burlywood
|
26 |
+
'SYM': '#7B68EE', # Medium Slate Blue
|
27 |
+
'VERB': '#FF69B4', # Hot Pink
|
28 |
+
'X': '#A9A9A9', # Dark Gray
|
29 |
+
}
|
30 |
+
|
31 |
+
POS_TRANSLATIONS = {
|
32 |
+
'es': {
|
33 |
+
'ADJ': 'Adjetivo',
|
34 |
+
'ADP': 'Preposición',
|
35 |
+
'ADV': 'Adverbio',
|
36 |
+
'AUX': 'Auxiliar',
|
37 |
+
'CCONJ': 'Conjunción Coordinante',
|
38 |
+
'DET': 'Determinante',
|
39 |
+
'INTJ': 'Interjección',
|
40 |
+
'NOUN': 'Sustantivo',
|
41 |
+
'NUM': 'Número',
|
42 |
+
'PART': 'Partícula',
|
43 |
+
'PRON': 'Pronombre',
|
44 |
+
'PROPN': 'Nombre Propio',
|
45 |
+
'SCONJ': 'Conjunción Subordinante',
|
46 |
+
'SYM': 'Símbolo',
|
47 |
+
'VERB': 'Verbo',
|
48 |
+
'X': 'Otro',
|
49 |
+
},
|
50 |
+
'en': {
|
51 |
+
'ADJ': 'Adjective',
|
52 |
+
'ADP': 'Preposition',
|
53 |
+
'ADV': 'Adverb',
|
54 |
+
'AUX': 'Auxiliary',
|
55 |
+
'CCONJ': 'Coordinating Conjunction',
|
56 |
+
'DET': 'Determiner',
|
57 |
+
'INTJ': 'Interjection',
|
58 |
+
'NOUN': 'Noun',
|
59 |
+
'NUM': 'Number',
|
60 |
+
'PART': 'Particle',
|
61 |
+
'PRON': 'Pronoun',
|
62 |
+
'PROPN': 'Proper Noun',
|
63 |
+
'SCONJ': 'Subordinating Conjunction',
|
64 |
+
'SYM': 'Symbol',
|
65 |
+
'VERB': 'Verb',
|
66 |
+
'X': 'Other',
|
67 |
+
},
|
68 |
+
'fr': {
|
69 |
+
'ADJ': 'Adjectif',
|
70 |
+
'ADP': 'Préposition',
|
71 |
+
'ADV': 'Adverbe',
|
72 |
+
'AUX': 'Auxiliaire',
|
73 |
+
'CCONJ': 'Conjonction de Coordination',
|
74 |
+
'DET': 'Déterminant',
|
75 |
+
'INTJ': 'Interjection',
|
76 |
+
'NOUN': 'Nom',
|
77 |
+
'NUM': 'Nombre',
|
78 |
+
'PART': 'Particule',
|
79 |
+
'PRON': 'Pronom',
|
80 |
+
'PROPN': 'Nom Propre',
|
81 |
+
'SCONJ': 'Conjonction de Subordination',
|
82 |
+
'SYM': 'Symbole',
|
83 |
+
'VERB': 'Verbe',
|
84 |
+
'X': 'Autre',
|
85 |
+
}
|
86 |
+
}
|
87 |
+
########################################################################################################################################
|
88 |
+
|
89 |
+
# Definimos las etiquetas y colores para cada idioma
|
90 |
+
ENTITY_LABELS = {
|
91 |
+
'es': {
|
92 |
+
"Personas": "lightblue",
|
93 |
+
"Conceptos": "lightgreen",
|
94 |
+
"Lugares": "lightcoral",
|
95 |
+
"Fechas": "lightyellow"
|
96 |
+
},
|
97 |
+
'en': {
|
98 |
+
"People": "lightblue",
|
99 |
+
"Concepts": "lightgreen",
|
100 |
+
"Places": "lightcoral",
|
101 |
+
"Dates": "lightyellow"
|
102 |
+
},
|
103 |
+
'fr': {
|
104 |
+
"Personnes": "lightblue",
|
105 |
+
"Concepts": "lightgreen",
|
106 |
+
"Lieux": "lightcoral",
|
107 |
+
"Dates": "lightyellow"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
#########################################################################################################
|
112 |
+
def count_pos(doc):
|
113 |
+
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
|
114 |
+
|
115 |
+
#####################################################################################################################
|
116 |
+
|
117 |
+
def create_semantic_graph(doc, lang):
|
118 |
+
G = nx.Graph()
|
119 |
+
word_freq = defaultdict(int)
|
120 |
+
lemma_to_word = {}
|
121 |
+
lemma_to_pos = {}
|
122 |
+
|
123 |
+
# Count frequencies of lemmas and map lemmas to their most common word form and POS
|
124 |
+
for token in doc:
|
125 |
+
if token.pos_ in ['NOUN', 'VERB']:
|
126 |
+
lemma = token.lemma_.lower()
|
127 |
+
word_freq[lemma] += 1
|
128 |
+
if lemma not in lemma_to_word or token.text.lower() == lemma:
|
129 |
+
lemma_to_word[lemma] = token.text
|
130 |
+
lemma_to_pos[lemma] = token.pos_
|
131 |
+
|
132 |
+
# Get top 20 most frequent lemmas
|
133 |
+
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
|
134 |
+
|
135 |
+
# Add nodes
|
136 |
+
for lemma in top_lemmas:
|
137 |
+
word = lemma_to_word[lemma]
|
138 |
+
G.add_node(word, pos=lemma_to_pos[lemma])
|
139 |
+
|
140 |
+
# Add edges
|
141 |
+
for token in doc:
|
142 |
+
if token.lemma_.lower() in top_lemmas:
|
143 |
+
if token.head.lemma_.lower() in top_lemmas:
|
144 |
+
source = lemma_to_word[token.lemma_.lower()]
|
145 |
+
target = lemma_to_word[token.head.lemma_.lower()]
|
146 |
+
if source != target: # Avoid self-loops
|
147 |
+
G.add_edge(source, target, label=token.dep_)
|
148 |
+
|
149 |
+
return G, word_freq
|
150 |
+
|
151 |
+
############################################################################################################################################
|
152 |
+
|
153 |
+
def visualize_semantic_relations(doc, lang):
|
154 |
+
G = nx.Graph()
|
155 |
+
word_freq = defaultdict(int)
|
156 |
+
lemma_to_word = {}
|
157 |
+
lemma_to_pos = {}
|
158 |
+
|
159 |
+
# Count frequencies of lemmas and map lemmas to their most common word form and POS
|
160 |
+
for token in doc:
|
161 |
+
if token.pos_ in ['NOUN', 'VERB']:
|
162 |
+
lemma = token.lemma_.lower()
|
163 |
+
word_freq[lemma] += 1
|
164 |
+
if lemma not in lemma_to_word or token.text.lower() == lemma:
|
165 |
+
lemma_to_word[lemma] = token.text
|
166 |
+
lemma_to_pos[lemma] = token.pos_
|
167 |
+
|
168 |
+
# Get top 20 most frequent lemmas
|
169 |
+
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
|
170 |
+
|
171 |
+
# Add nodes
|
172 |
+
for lemma in top_lemmas:
|
173 |
+
word = lemma_to_word[lemma]
|
174 |
+
G.add_node(word, pos=lemma_to_pos[lemma])
|
175 |
+
|
176 |
+
# Add edges
|
177 |
+
for token in doc:
|
178 |
+
if token.lemma_.lower() in top_lemmas:
|
179 |
+
if token.head.lemma_.lower() in top_lemmas:
|
180 |
+
source = lemma_to_word[token.lemma_.lower()]
|
181 |
+
target = lemma_to_word[token.head.lemma_.lower()]
|
182 |
+
if source != target: # Avoid self-loops
|
183 |
+
G.add_edge(source, target, label=token.dep_)
|
184 |
+
|
185 |
+
fig, ax = plt.subplots(figsize=(36, 27))
|
186 |
+
pos = nx.spring_layout(G, k=0.7, iterations=50)
|
187 |
+
|
188 |
+
node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]
|
189 |
+
|
190 |
+
nx.draw(G, pos, node_color=node_colors, with_labels=True,
|
191 |
+
node_size=10000,
|
192 |
+
font_size=16,
|
193 |
+
font_weight='bold',
|
194 |
+
arrows=True,
|
195 |
+
arrowsize=30,
|
196 |
+
width=3,
|
197 |
+
edge_color='gray',
|
198 |
+
ax=ax)
|
199 |
+
|
200 |
+
edge_labels = nx.get_edge_attributes(G, 'label')
|
201 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax)
|
202 |
+
|
203 |
+
title = {
|
204 |
+
'es': "Relaciones Semánticas Relevantes",
|
205 |
+
'en': "Relevant Semantic Relations",
|
206 |
+
'fr': "Relations Sémantiques Pertinentes"
|
207 |
+
}
|
208 |
+
ax.set_title(title[lang], fontsize=24, fontweight='bold')
|
209 |
+
ax.axis('off')
|
210 |
+
|
211 |
+
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
|
212 |
+
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
|
213 |
+
for pos in ['NOUN', 'VERB']]
|
214 |
+
ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16)
|
215 |
+
|
216 |
+
return fig
|
217 |
+
|
218 |
+
############################################################################################################################################
|
219 |
+
def identify_and_contextualize_entities(doc, lang):
|
220 |
+
entities = []
|
221 |
+
for ent in doc.ents:
|
222 |
+
# Obtener el contexto (3 palabras antes y después de la entidad)
|
223 |
+
start = max(0, ent.start - 3)
|
224 |
+
end = min(len(doc), ent.end + 3)
|
225 |
+
context = doc[start:end].text
|
226 |
+
|
227 |
+
entities.append({
|
228 |
+
'text': ent.text,
|
229 |
+
'label': ent.label_,
|
230 |
+
'start': ent.start,
|
231 |
+
'end': ent.end,
|
232 |
+
'context': context
|
233 |
+
})
|
234 |
+
|
235 |
+
# Identificar conceptos clave (usando sustantivos y verbos más frecuentes)
|
236 |
+
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
|
237 |
+
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave
|
238 |
+
|
239 |
+
return entities, key_concepts
|
240 |
+
|
241 |
+
|
242 |
+
############################################################################################################################################
|
243 |
+
def perform_semantic_analysis(text, nlp, lang):
|
244 |
+
doc = nlp(text)
|
245 |
+
|
246 |
+
# Identificar entidades y conceptos clave
|
247 |
+
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
|
248 |
+
|
249 |
+
# Visualizar relaciones semánticas
|
250 |
+
relations_graph = visualize_semantic_relations(doc, lang)
|
251 |
+
|
252 |
+
# Imprimir entidades para depuración
|
253 |
+
print(f"Entidades encontradas ({lang}):")
|
254 |
+
for ent in doc.ents:
|
255 |
+
print(f"{ent.text} - {ent.label_}")
|
256 |
+
|
257 |
+
relations_graph = visualize_semantic_relations(doc, lang)
|
258 |
+
return {
|
259 |
+
'entities': entities,
|
260 |
+
'key_concepts': key_concepts,
|
261 |
+
'relations_graph': relations_graph
|
262 |
+
}
|
263 |
+
|
264 |
+
__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS', 'identify_and_contextualize_entities']
|
modules/text_analysis/semantic_analysis_v00.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#semantic_analysis.py
|
2 |
+
import streamlit as st
|
3 |
+
import spacy
|
4 |
+
import networkx as nx
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from collections import Counter, defaultdict
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Define colors for grammatical categories
|
11 |
+
POS_COLORS = {
|
12 |
+
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
13 |
+
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
14 |
+
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
15 |
+
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
16 |
+
}
|
17 |
+
|
18 |
+
POS_TRANSLATIONS = {
|
19 |
+
'es': {
|
20 |
+
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
21 |
+
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
|
22 |
+
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
|
23 |
+
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
|
24 |
+
'VERB': 'Verbo', 'X': 'Otro',
|
25 |
+
},
|
26 |
+
'en': {
|
27 |
+
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
28 |
+
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
29 |
+
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
30 |
+
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
31 |
+
'VERB': 'Verb', 'X': 'Other',
|
32 |
+
},
|
33 |
+
'fr': {
|
34 |
+
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
35 |
+
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
|
36 |
+
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
37 |
+
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
38 |
+
'VERB': 'Verbe', 'X': 'Autre',
|
39 |
+
}
|
40 |
+
}
|
41 |
+
|
42 |
+
ENTITY_LABELS = {
|
43 |
+
'es': {
|
44 |
+
"Personas": "lightblue",
|
45 |
+
"Lugares": "lightcoral",
|
46 |
+
"Inventos": "lightgreen",
|
47 |
+
"Fechas": "lightyellow",
|
48 |
+
"Conceptos": "lightpink"
|
49 |
+
},
|
50 |
+
'en': {
|
51 |
+
"People": "lightblue",
|
52 |
+
"Places": "lightcoral",
|
53 |
+
"Inventions": "lightgreen",
|
54 |
+
"Dates": "lightyellow",
|
55 |
+
"Concepts": "lightpink"
|
56 |
+
},
|
57 |
+
'fr': {
|
58 |
+
"Personnes": "lightblue",
|
59 |
+
"Lieux": "lightcoral",
|
60 |
+
"Inventions": "lightgreen",
|
61 |
+
"Dates": "lightyellow",
|
62 |
+
"Concepts": "lightpink"
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
def identify_and_contextualize_entities(doc, lang):
|
67 |
+
entities = []
|
68 |
+
for ent in doc.ents:
|
69 |
+
# Obtener el contexto (3 palabras antes y después de la entidad)
|
70 |
+
start = max(0, ent.start - 3)
|
71 |
+
end = min(len(doc), ent.end + 3)
|
72 |
+
context = doc[start:end].text
|
73 |
+
|
74 |
+
# Mapear las etiquetas de spaCy a nuestras categorías
|
75 |
+
if ent.label_ in ['PERSON', 'ORG']:
|
76 |
+
category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes"
|
77 |
+
elif ent.label_ in ['LOC', 'GPE']:
|
78 |
+
category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux"
|
79 |
+
elif ent.label_ in ['PRODUCT']:
|
80 |
+
category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions"
|
81 |
+
elif ent.label_ in ['DATE', 'TIME']:
|
82 |
+
category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates"
|
83 |
+
else:
|
84 |
+
category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts"
|
85 |
+
|
86 |
+
entities.append({
|
87 |
+
'text': ent.text,
|
88 |
+
'label': category,
|
89 |
+
'start': ent.start,
|
90 |
+
'end': ent.end,
|
91 |
+
'context': context
|
92 |
+
})
|
93 |
+
|
94 |
+
# Identificar conceptos clave (usando sustantivos y verbos más frecuentes)
|
95 |
+
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
|
96 |
+
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave
|
97 |
+
|
98 |
+
return entities, key_concepts
|
99 |
+
|
100 |
+
def create_concept_graph(text, concepts):
|
101 |
+
vectorizer = TfidfVectorizer()
|
102 |
+
tfidf_matrix = vectorizer.fit_transform([text])
|
103 |
+
concept_vectors = vectorizer.transform(concepts)
|
104 |
+
similarity_matrix = cosine_similarity(concept_vectors, concept_vectors)
|
105 |
+
|
106 |
+
G = nx.Graph()
|
107 |
+
for i, concept in enumerate(concepts):
|
108 |
+
G.add_node(concept)
|
109 |
+
for j in range(i+1, len(concepts)):
|
110 |
+
if similarity_matrix[i][j] > 0.1:
|
111 |
+
G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j])
|
112 |
+
|
113 |
+
return G
|
114 |
+
|
115 |
+
def visualize_concept_graph(G, lang):
|
116 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
117 |
+
pos = nx.spring_layout(G)
|
118 |
+
|
119 |
+
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax)
|
120 |
+
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
|
121 |
+
nx.draw_networkx_edges(G, pos, width=1, ax=ax)
|
122 |
+
|
123 |
+
edge_labels = nx.get_edge_attributes(G, 'weight')
|
124 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax)
|
125 |
+
|
126 |
+
title = {
|
127 |
+
'es': "Relaciones Conceptuales",
|
128 |
+
'en': "Conceptual Relations",
|
129 |
+
'fr': "Relations Conceptuelles"
|
130 |
+
}
|
131 |
+
ax.set_title(title[lang], fontsize=16)
|
132 |
+
ax.axis('off')
|
133 |
+
|
134 |
+
return fig
|
135 |
+
|
136 |
+
def perform_semantic_analysis(text, nlp, lang):
|
137 |
+
doc = nlp(text)
|
138 |
+
|
139 |
+
# Identificar entidades y conceptos clave
|
140 |
+
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
|
141 |
+
|
142 |
+
# Crear y visualizar grafo de conceptos
|
143 |
+
concepts = [concept for concept, _ in key_concepts]
|
144 |
+
concept_graph = create_concept_graph(text, concepts)
|
145 |
+
relations_graph = visualize_concept_graph(concept_graph, lang)
|
146 |
+
|
147 |
+
return {
|
148 |
+
'entities': entities,
|
149 |
+
'key_concepts': key_concepts,
|
150 |
+
'relations_graph': relations_graph
|
151 |
+
}
|
152 |
+
|
153 |
+
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS']
|
modules/ui/ui.py
CHANGED
@@ -58,14 +58,16 @@ from ..text_analysis.morpho_analysis import (
|
|
58 |
|
59 |
######################################################
|
60 |
from ..text_analysis.semantic_analysis import (
|
61 |
-
visualize_semantic_relations,
|
62 |
-
perform_semantic_analysis
|
|
|
|
|
63 |
)
|
64 |
|
65 |
######################################################
|
66 |
from ..text_analysis.discourse_analysis import (
|
67 |
-
|
68 |
-
|
69 |
)
|
70 |
|
71 |
######################################################
|
@@ -763,7 +765,7 @@ def display_semantic_analysis_interface(nlp_models, lang_code):
|
|
763 |
'text_input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción...",
|
764 |
'file_uploader': "O cargue un archivo de texto",
|
765 |
'analyze_button': "Analizar texto",
|
766 |
-
'
|
767 |
'identified_entities': "Entidades Identificadas",
|
768 |
'key_concepts': "Conceptos Clave",
|
769 |
'success_message': "Análisis semántico guardado correctamente.",
|
@@ -776,7 +778,7 @@ def display_semantic_analysis_interface(nlp_models, lang_code):
|
|
776 |
'text_input_placeholder': "The goal of this application is to improve your writing skills...",
|
777 |
'file_uploader': "Or upload a text file",
|
778 |
'analyze_button': "Analyze text",
|
779 |
-
'
|
780 |
'identified_entities': "Identified Entities",
|
781 |
'key_concepts': "Key Concepts",
|
782 |
'success_message': "Semantic analysis saved successfully.",
|
@@ -789,7 +791,7 @@ def display_semantic_analysis_interface(nlp_models, lang_code):
|
|
789 |
'text_input_placeholder': "L'objectif de cette application est d'améliorer vos compétences en rédaction...",
|
790 |
'file_uploader': "Ou téléchargez un fichier texte",
|
791 |
'analyze_button': "Analyser le texte",
|
792 |
-
'
|
793 |
'identified_entities': "Entités Identifiées",
|
794 |
'key_concepts': "Concepts Clés",
|
795 |
'success_message': "Analyse sémantique enregistrée avec succès.",
|
@@ -824,18 +826,11 @@ def display_semantic_analysis_interface(nlp_models, lang_code):
|
|
824 |
|
825 |
# Mostrar conceptos clave
|
826 |
with st.expander(t['key_concepts'], expanded=True):
|
827 |
-
|
828 |
-
st.
|
829 |
-
|
830 |
-
# Mostrar
|
831 |
-
with st.expander(t['
|
832 |
-
entities_text = ""
|
833 |
-
for entity in analysis_result['entities']:
|
834 |
-
entities_text += f"[[{entity['text']} ({entity['label']}) - Contexto: {entity['context']}]] "
|
835 |
-
st.markdown(entities_text)
|
836 |
-
|
837 |
-
# Mostrar el gráfico de relaciones semánticas
|
838 |
-
with st.expander(t['semantic_relations'], expanded=True):
|
839 |
st.pyplot(analysis_result['relations_graph'])
|
840 |
|
841 |
# Guardar el resultado del análisis
|
@@ -845,7 +840,6 @@ def display_semantic_analysis_interface(nlp_models, lang_code):
|
|
845 |
st.error(t['error_message'])
|
846 |
else:
|
847 |
st.warning(t['warning_message'])
|
848 |
-
|
849 |
##################################################################################################
|
850 |
def display_discourse_analysis_interface(nlp_models, lang_code):
|
851 |
translations = {
|
@@ -898,19 +892,13 @@ def display_discourse_analysis_interface(nlp_models, lang_code):
|
|
898 |
text_content2 = uploaded_file2.getvalue().decode('utf-8')
|
899 |
|
900 |
# Realizar el análisis
|
901 |
-
|
902 |
|
903 |
-
# Mostrar los
|
904 |
-
|
905 |
-
col1, col2 = st.columns(2)
|
906 |
-
with col1:
|
907 |
-
st.pyplot(graph1)
|
908 |
-
with col2:
|
909 |
-
st.pyplot(graph2)
|
910 |
|
911 |
# Guardar el resultado del análisis
|
912 |
-
|
913 |
-
if store_discourse_analysis_result(st.session_state.username, text_content1, text_content2, graph1, graph2):
|
914 |
st.success(t['success_message'])
|
915 |
else:
|
916 |
st.error(t['error_message'])
|
|
|
58 |
|
59 |
######################################################
|
60 |
from ..text_analysis.semantic_analysis import (
|
61 |
+
#visualize_semantic_relations,
|
62 |
+
perform_semantic_analysis,
|
63 |
+
create_concept_graph,
|
64 |
+
visualize_concept_graph
|
65 |
)
|
66 |
|
67 |
######################################################
|
68 |
from ..text_analysis.discourse_analysis import (
|
69 |
+
perform_discourse_analysis,
|
70 |
+
display_discourse_analysis_results
|
71 |
)
|
72 |
|
73 |
######################################################
|
|
|
765 |
'text_input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción...",
|
766 |
'file_uploader': "O cargue un archivo de texto",
|
767 |
'analyze_button': "Analizar texto",
|
768 |
+
'conceptual_relations': "Relaciones Conceptuales",
|
769 |
'identified_entities': "Entidades Identificadas",
|
770 |
'key_concepts': "Conceptos Clave",
|
771 |
'success_message': "Análisis semántico guardado correctamente.",
|
|
|
778 |
'text_input_placeholder': "The goal of this application is to improve your writing skills...",
|
779 |
'file_uploader': "Or upload a text file",
|
780 |
'analyze_button': "Analyze text",
|
781 |
+
'conceptual_relations': "Conceptual Relations",
|
782 |
'identified_entities': "Identified Entities",
|
783 |
'key_concepts': "Key Concepts",
|
784 |
'success_message': "Semantic analysis saved successfully.",
|
|
|
791 |
'text_input_placeholder': "L'objectif de cette application est d'améliorer vos compétences en rédaction...",
|
792 |
'file_uploader': "Ou téléchargez un fichier texte",
|
793 |
'analyze_button': "Analyser le texte",
|
794 |
+
'conceptual_relations': "Relations Conceptuelles",
|
795 |
'identified_entities': "Entités Identifiées",
|
796 |
'key_concepts': "Concepts Clés",
|
797 |
'success_message': "Analyse sémantique enregistrée avec succès.",
|
|
|
826 |
|
827 |
# Mostrar conceptos clave
|
828 |
with st.expander(t['key_concepts'], expanded=True):
|
829 |
+
concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis_result['key_concepts']])
|
830 |
+
st.write(concept_text)
|
831 |
+
|
832 |
+
# Mostrar el gráfico de relaciones conceptuales
|
833 |
+
with st.expander(t['conceptual_relations'], expanded=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
834 |
st.pyplot(analysis_result['relations_graph'])
|
835 |
|
836 |
# Guardar el resultado del análisis
|
|
|
840 |
st.error(t['error_message'])
|
841 |
else:
|
842 |
st.warning(t['warning_message'])
|
|
|
843 |
##################################################################################################
|
844 |
def display_discourse_analysis_interface(nlp_models, lang_code):
|
845 |
translations = {
|
|
|
892 |
text_content2 = uploaded_file2.getvalue().decode('utf-8')
|
893 |
|
894 |
# Realizar el análisis
|
895 |
+
analysis_result = perform_discourse_analysis(text_content1, text_content2, nlp_models[lang_code], lang_code)
|
896 |
|
897 |
+
# Mostrar los resultados del análisis
|
898 |
+
display_discourse_analysis_results(analysis_result, lang_code)
|
|
|
|
|
|
|
|
|
|
|
899 |
|
900 |
# Guardar el resultado del análisis
|
901 |
+
if store_discourse_analysis_result(st.session_state.username, text_content1, text_content2, analysis_result):
|
|
|
902 |
st.success(t['success_message'])
|
903 |
else:
|
904 |
st.error(t['error_message'])
|