Update modules/chatbot.py
Browse files- modules/chatbot.py +78 -11
modules/chatbot.py
CHANGED
@@ -1,5 +1,25 @@
|
|
1 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class MultilingualChatbot:
|
5 |
def __init__(self):
|
@@ -15,19 +35,58 @@ class MultilingualChatbot:
|
|
15 |
}
|
16 |
for tokenizer in self.tokenizers.values():
|
17 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def generate_response(self, prompt, src_lang):
|
20 |
-
# Default to English if the language is not supported
|
21 |
model = self.models.get(src_lang, self.models['en'])
|
22 |
tokenizer = self.tokenizers.get(src_lang, self.tokenizers['en'])
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
input_ids = input_ids.to(model.device)
|
28 |
|
29 |
-
|
30 |
input_ids,
|
|
|
31 |
max_length=1000,
|
32 |
pad_token_id=tokenizer.eos_token_id,
|
33 |
no_repeat_ngram_size=3,
|
@@ -39,7 +98,9 @@ class MultilingualChatbot:
|
|
39 |
length_penalty=1.0,
|
40 |
repetition_penalty=1.2
|
41 |
)
|
42 |
-
|
|
|
|
|
43 |
|
44 |
def initialize_chatbot():
|
45 |
return MultilingualChatbot()
|
@@ -47,8 +108,14 @@ def initialize_chatbot():
|
|
47 |
def get_chatbot_response(chatbot, prompt, src_lang):
|
48 |
return chatbot.generate_response(prompt, src_lang)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
import torch
|
3 |
+
from torch.optim import Adam
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
import json
|
6 |
+
import tqdm
|
7 |
+
|
8 |
+
class MultilingualChatData(Dataset):
|
9 |
+
def __init__(self, file_path, tokenizer, max_length=512):
|
10 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
11 |
+
self.data = json.load(f)
|
12 |
+
self.tokenizer = tokenizer
|
13 |
+
self.max_length = max_length
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return len(self.data)
|
17 |
+
|
18 |
+
def __getitem__(self, idx):
|
19 |
+
item = self.data[idx]
|
20 |
+
input_text = f"<startofstring> {item['input']} <bot>: {item['output']} <endofstring>"
|
21 |
+
encoding = self.tokenizer(input_text, truncation=True, padding='max_length', max_length=self.max_length, return_tensors="pt")
|
22 |
+
return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze()
|
23 |
|
24 |
class MultilingualChatbot:
|
25 |
def __init__(self):
|
|
|
35 |
}
|
36 |
for tokenizer in self.tokenizers.values():
|
37 |
tokenizer.pad_token = tokenizer.eos_token
|
38 |
+
tokenizer.add_special_tokens({
|
39 |
+
"bos_token": "<startofstring>",
|
40 |
+
"eos_token": "<endofstring>"
|
41 |
+
})
|
42 |
+
tokenizer.add_tokens(["<bot>:"])
|
43 |
+
|
44 |
+
for model in self.models.values():
|
45 |
+
model.resize_token_embeddings(len(self.tokenizers['en'])) # Assuming all tokenizers have the same vocabulary size
|
46 |
+
|
47 |
+
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
48 |
+
for model in self.models.values():
|
49 |
+
model.to(self.device)
|
50 |
+
|
51 |
+
def train(self, lang, data_file, epochs=5, batch_size=32, learning_rate=1e-4):
|
52 |
+
model = self.models[lang]
|
53 |
+
tokenizer = self.tokenizers[lang]
|
54 |
+
|
55 |
+
chat_data = MultilingualChatData(data_file, tokenizer)
|
56 |
+
data_loader = DataLoader(chat_data, batch_size=batch_size, shuffle=True)
|
57 |
+
|
58 |
+
optimizer = Adam(model.parameters(), lr=learning_rate)
|
59 |
+
|
60 |
+
model.train()
|
61 |
+
for epoch in range(epochs):
|
62 |
+
total_loss = 0
|
63 |
+
for batch in tqdm.tqdm(data_loader, desc=f"Epoch {epoch+1}/{epochs}"):
|
64 |
+
input_ids, attention_mask = [b.to(self.device) for b in batch]
|
65 |
+
|
66 |
+
optimizer.zero_grad()
|
67 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
|
68 |
+
loss = outputs.loss
|
69 |
+
loss.backward()
|
70 |
+
optimizer.step()
|
71 |
+
|
72 |
+
total_loss += loss.item()
|
73 |
+
|
74 |
+
print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(data_loader):.4f}")
|
75 |
+
|
76 |
+
torch.save(model.state_dict(), f"model_state_{lang}.pt")
|
77 |
|
78 |
def generate_response(self, prompt, src_lang):
|
|
|
79 |
model = self.models.get(src_lang, self.models['en'])
|
80 |
tokenizer = self.tokenizers.get(src_lang, self.tokenizers['en'])
|
81 |
|
82 |
+
input_text = f"<startofstring> {prompt} <bot>: "
|
83 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(self.device)
|
84 |
|
85 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=self.device)
|
|
|
86 |
|
87 |
+
output = model.generate(
|
88 |
input_ids,
|
89 |
+
attention_mask=attention_mask,
|
90 |
max_length=1000,
|
91 |
pad_token_id=tokenizer.eos_token_id,
|
92 |
no_repeat_ngram_size=3,
|
|
|
98 |
length_penalty=1.0,
|
99 |
repetition_penalty=1.2
|
100 |
)
|
101 |
+
|
102 |
+
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
103 |
+
return decoded_output.split("<bot>:")[-1].strip()
|
104 |
|
105 |
def initialize_chatbot():
|
106 |
return MultilingualChatbot()
|
|
|
108 |
def get_chatbot_response(chatbot, prompt, src_lang):
|
109 |
return chatbot.generate_response(prompt, src_lang)
|
110 |
|
111 |
+
# Ejemplo de uso
|
112 |
+
if __name__ == "__main__":
|
113 |
+
chatbot = initialize_chatbot()
|
114 |
+
|
115 |
+
# Entrenar el modelo en espa帽ol (asumiendo que tienes un archivo de datos en espa帽ol)
|
116 |
+
chatbot.train('es', './spanish_chat_data.json', epochs=3)
|
117 |
+
|
118 |
+
# Generar respuestas
|
119 |
+
print(get_chatbot_response(chatbot, "Hola, 驴c贸mo est谩s?", 'es'))
|
120 |
+
print(get_chatbot_response(chatbot, "Hello, how are you?", 'en'))
|
121 |
+
print(get_chatbot_response(chatbot, "Bonjour, comment allez-vous?", 'fr'))
|