Create morpho_analysis.py
Browse files
modules/text_analysis/morpho_analysis.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /modules/morpho_analysis.py
|
2 |
+
import spacy
|
3 |
+
from collections import Counter
|
4 |
+
from spacy import displacy
|
5 |
+
import re
|
6 |
+
|
7 |
+
# Define colors for grammatical categories
|
8 |
+
POS_COLORS = {
|
9 |
+
'ADJ': '#FFA07A', # Light Salmon
|
10 |
+
'ADP': '#98FB98', # Pale Green
|
11 |
+
'ADV': '#87CEFA', # Light Sky Blue
|
12 |
+
'AUX': '#DDA0DD', # Plum
|
13 |
+
'CCONJ': '#F0E68C', # Khaki
|
14 |
+
'DET': '#FFB6C1', # Light Pink
|
15 |
+
'INTJ': '#FF6347', # Tomato
|
16 |
+
'NOUN': '#90EE90', # Light Green
|
17 |
+
'NUM': '#FAFAD2', # Light Goldenrod Yellow
|
18 |
+
'PART': '#D3D3D3', # Light Gray
|
19 |
+
'PRON': '#FFA500', # Orange
|
20 |
+
'PROPN': '#20B2AA', # Light Sea Green
|
21 |
+
'SCONJ': '#DEB887', # Burlywood
|
22 |
+
'SYM': '#7B68EE', # Medium Slate Blue
|
23 |
+
'VERB': '#FF69B4', # Hot Pink
|
24 |
+
'X': '#A9A9A9', # Dark Gray
|
25 |
+
}
|
26 |
+
|
27 |
+
POS_TRANSLATIONS = {
|
28 |
+
'es': {
|
29 |
+
'ADJ': 'Adjetivo',
|
30 |
+
'ADP': 'Adposici贸n',
|
31 |
+
'ADV': 'Adverbio',
|
32 |
+
'AUX': 'Auxiliar',
|
33 |
+
'CCONJ': 'Conjunci贸n Coordinante',
|
34 |
+
'DET': 'Determinante',
|
35 |
+
'INTJ': 'Interjecci贸n',
|
36 |
+
'NOUN': 'Sustantivo',
|
37 |
+
'NUM': 'N煤mero',
|
38 |
+
'PART': 'Part铆cula',
|
39 |
+
'PRON': 'Pronombre',
|
40 |
+
'PROPN': 'Nombre Propio',
|
41 |
+
'SCONJ': 'Conjunci贸n Subordinante',
|
42 |
+
'SYM': 'S铆mbolo',
|
43 |
+
'VERB': 'Verbo',
|
44 |
+
'X': 'Otro',
|
45 |
+
},
|
46 |
+
'en': {
|
47 |
+
'ADJ': 'Adjective',
|
48 |
+
'ADP': 'Adposition',
|
49 |
+
'ADV': 'Adverb',
|
50 |
+
'AUX': 'Auxiliary',
|
51 |
+
'CCONJ': 'Coordinating Conjunction',
|
52 |
+
'DET': 'Determiner',
|
53 |
+
'INTJ': 'Interjection',
|
54 |
+
'NOUN': 'Noun',
|
55 |
+
'NUM': 'Number',
|
56 |
+
'PART': 'Particle',
|
57 |
+
'PRON': 'Pronoun',
|
58 |
+
'PROPN': 'Proper Noun',
|
59 |
+
'SCONJ': 'Subordinating Conjunction',
|
60 |
+
'SYM': 'Symbol',
|
61 |
+
'VERB': 'Verb',
|
62 |
+
'X': 'Other',
|
63 |
+
},
|
64 |
+
'fr': {
|
65 |
+
'ADJ': 'Adjectif',
|
66 |
+
'ADP': 'Adposition',
|
67 |
+
'ADV': 'Adverbe',
|
68 |
+
'AUX': 'Auxiliaire',
|
69 |
+
'CCONJ': 'Conjonction de Coordination',
|
70 |
+
'DET': 'D茅terminant',
|
71 |
+
'INTJ': 'Interjection',
|
72 |
+
'NOUN': 'Nom',
|
73 |
+
'NUM': 'Nombre',
|
74 |
+
'PART': 'Particule',
|
75 |
+
'PRON': 'Pronom',
|
76 |
+
'PROPN': 'Nom Propre',
|
77 |
+
'SCONJ': 'Conjonction de Subordination',
|
78 |
+
'SYM': 'Symbole',
|
79 |
+
'VERB': 'Verbe',
|
80 |
+
'X': 'Autre',
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
#############################################################################################
|
85 |
+
def get_repeated_words_colors(doc):
|
86 |
+
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
|
87 |
+
repeated_words = {word: count for word, count in word_counts.items() if count > 1}
|
88 |
+
|
89 |
+
word_colors = {}
|
90 |
+
for token in doc:
|
91 |
+
if token.text.lower() in repeated_words:
|
92 |
+
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')
|
93 |
+
|
94 |
+
return word_colors
|
95 |
+
|
96 |
+
######################################################################################################
|
97 |
+
def highlight_repeated_words(doc, word_colors):
|
98 |
+
highlighted_text = []
|
99 |
+
for token in doc:
|
100 |
+
if token.text.lower() in word_colors:
|
101 |
+
color = word_colors[token.text.lower()]
|
102 |
+
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
|
103 |
+
else:
|
104 |
+
highlighted_text.append(token.text)
|
105 |
+
return ' '.join(highlighted_text)
|
106 |
+
|
107 |
+
#################################################################################################
|
108 |
+
def generate_arc_diagram(doc, lang_code):
|
109 |
+
sentences = list(doc.sents)
|
110 |
+
arc_diagrams = []
|
111 |
+
for sent in sentences:
|
112 |
+
html = displacy.render(sent, style="dep", options={"distance": 100})
|
113 |
+
html = html.replace('height="375"', 'height="200"')
|
114 |
+
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
|
115 |
+
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
116 |
+
arc_diagrams.append(html)
|
117 |
+
return arc_diagrams
|
118 |
+
|
119 |
+
#################################################################################################
|
120 |
+
def get_detailed_pos_analysis(doc):
|
121 |
+
"""
|
122 |
+
Realiza un an谩lisis detallado de las categor铆as gramaticales (POS) en el texto.
|
123 |
+
"""
|
124 |
+
pos_counts = Counter(token.pos_ for token in doc)
|
125 |
+
total_tokens = len(doc)
|
126 |
+
pos_analysis = []
|
127 |
+
for pos, count in pos_counts.items():
|
128 |
+
percentage = (count / total_tokens) * 100
|
129 |
+
pos_analysis.append({
|
130 |
+
'pos': pos,
|
131 |
+
'count': count,
|
132 |
+
'percentage': round(percentage, 2),
|
133 |
+
'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos
|
134 |
+
})
|
135 |
+
return sorted(pos_analysis, key=lambda x: x['count'], reverse=True)
|
136 |
+
|
137 |
+
#################################################################################################
|
138 |
+
def get_morphological_analysis(doc):
|
139 |
+
"""
|
140 |
+
Realiza un an谩lisis morfol贸gico detallado de las palabras en el texto.
|
141 |
+
"""
|
142 |
+
morphology_analysis = []
|
143 |
+
for token in doc:
|
144 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']: # Enfocarse en categor铆as principales
|
145 |
+
morphology_analysis.append({
|
146 |
+
'text': token.text,
|
147 |
+
'lemma': token.lemma_,
|
148 |
+
'pos': token.pos_,
|
149 |
+
'tag': token.tag_,
|
150 |
+
'dep': token.dep_,
|
151 |
+
'shape': token.shape_,
|
152 |
+
'is_alpha': token.is_alpha,
|
153 |
+
'is_stop': token.is_stop,
|
154 |
+
'morph': str(token.morph)
|
155 |
+
})
|
156 |
+
return morphology_analysis
|
157 |
+
|
158 |
+
#################################################################################################
|
159 |
+
def get_sentence_structure_analysis(doc):
|
160 |
+
"""
|
161 |
+
Analiza la estructura de las oraciones en el texto.
|
162 |
+
"""
|
163 |
+
sentence_analysis = []
|
164 |
+
for sent in doc.sents:
|
165 |
+
sentence_analysis.append({
|
166 |
+
'text': sent.text,
|
167 |
+
'root': sent.root.text,
|
168 |
+
'root_pos': sent.root.pos_,
|
169 |
+
'num_tokens': len(sent),
|
170 |
+
'num_words': len([token for token in sent if token.is_alpha]),
|
171 |
+
'subjects': [token.text for token in sent if "subj" in token.dep_],
|
172 |
+
'objects': [token.text for token in sent if "obj" in token.dep_],
|
173 |
+
'verbs': [token.text for token in sent if token.pos_ == "VERB"]
|
174 |
+
})
|
175 |
+
return sentence_analysis
|
176 |
+
|
177 |
+
#################################################################################################
|
178 |
+
def perform_advanced_morphosyntactic_analysis(text, nlp):
|
179 |
+
"""
|
180 |
+
Realiza un an谩lisis morfosint谩ctico avanzado del texto.
|
181 |
+
"""
|
182 |
+
doc = nlp(text)
|
183 |
+
return {
|
184 |
+
'pos_analysis': get_detailed_pos_analysis(doc),
|
185 |
+
'morphological_analysis': get_morphological_analysis(doc),
|
186 |
+
'sentence_structure': get_sentence_structure_analysis(doc),
|
187 |
+
'arc_diagram': generate_arc_diagram(doc, nlp.lang)
|
188 |
+
}
|
189 |
+
|
190 |
+
# Al final del archivo morph_analysis.py
|
191 |
+
__all__ = ['get_repeated_words_colors', 'highlight_repeated_words', 'generate_arc_diagram', 'perform_advanced_morphosyntactic_analysis', 'POS_COLORS', 'POS_TRANSLATIONS']
|