AIdeaText commited on
Commit
e50f97b
·
verified ·
1 Parent(s): 1a4fce8

Delete modules/discourse_analysis.py

Browse files
Files changed (1) hide show
  1. modules/discourse_analysis.py +0 -54
modules/discourse_analysis.py DELETED
@@ -1,54 +0,0 @@
1
- import streamlit as st
2
- import spacy
3
- import networkx as nx
4
- import matplotlib.pyplot as plt
5
- from collections import defaultdict
6
- from .semantic_analysis import visualize_semantic_relations, create_semantic_graph, POS_COLORS, POS_TRANSLATIONS
7
-
8
- ##################################################################################################################
9
- def compare_semantic_analysis(text1, text2, nlp, lang):
10
- doc1 = nlp(text1)
11
- doc2 = nlp(text2)
12
-
13
- G1, pos_counts1 = create_semantic_graph(doc1, lang)
14
- G2, pos_counts2 = create_semantic_graph(doc2, lang)
15
-
16
- # Create two separate figures with a smaller size
17
- fig1, ax1 = plt.subplots(figsize=(18, 13))
18
- fig2, ax2 = plt.subplots(figsize=(18, 13))
19
-
20
- # Draw the first graph
21
- pos1 = nx.spring_layout(G1, k=0.7, iterations=50)
22
- nx.draw(G1, pos1, ax=ax1, node_color=[POS_COLORS.get(G1.nodes[node]['pos'], '#CCCCCC') for node in G1.nodes()],
23
- with_labels=True, node_size=4000, font_size=10, font_weight='bold',
24
- arrows=True, arrowsize=20, width=2, edge_color='gray')
25
- nx.draw_networkx_edge_labels(G1, pos1, edge_labels=nx.get_edge_attributes(G1, 'label'), font_size=8, ax=ax1)
26
-
27
- # Draw the second graph
28
- pos2 = nx.spring_layout(G2, k=0.7, iterations=50)
29
- nx.draw(G2, pos2, ax=ax2, node_color=[POS_COLORS.get(G2.nodes[node]['pos'], '#CCCCCC') for node in G2.nodes()],
30
- with_labels=True, node_size=4000, font_size=10, font_weight='bold',
31
- arrows=True, arrowsize=20, width=2, edge_color='gray')
32
- nx.draw_networkx_edge_labels(G2, pos2, edge_labels=nx.get_edge_attributes(G2, 'label'), font_size=8, ax=ax2)
33
-
34
- ax1.set_title("Documento 1: Relaciones Semánticas Relevantes", fontsize=14, fontweight='bold')
35
- ax2.set_title("Documento 2: Relaciones Semánticas Relevantes", fontsize=14, fontweight='bold')
36
-
37
- ax1.axis('off')
38
- ax2.axis('off')
39
-
40
- # Add legends
41
- legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
42
- label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
43
- for pos in ['NOUN', 'VERB']]
44
- ax1.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=8)
45
- ax2.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=8)
46
-
47
- plt.tight_layout()
48
-
49
- return fig1, fig2
50
-
51
- ##################################################################################################################
52
- def perform_discourse_analysis(text1, text2, nlp, lang):
53
- graph1, graph2 = compare_semantic_analysis(text1, text2, nlp, lang)
54
- return graph1, graph2