File size: 9,388 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
from collections import defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A',    # Light Salmon
    'ADP': '#98FB98',    # Pale Green
    'ADV': '#87CEFA',    # Light Sky Blue
    'AUX': '#DDA0DD',    # Plum
    'CCONJ': '#F0E68C',  # Khaki
    'DET': '#FFB6C1',    # Light Pink
    'INTJ': '#FF6347',   # Tomato
    'NOUN': '#90EE90',   # Light Green
    'NUM': '#FAFAD2',    # Light Goldenrod Yellow
    'PART': '#D3D3D3',   # Light Gray
    'PRON': '#FFA500',   # Orange
    'PROPN': '#20B2AA',  # Light Sea Green
    'SCONJ': '#DEB887',  # Burlywood
    'SYM': '#7B68EE',    # Medium Slate Blue
    'VERB': '#FF69B4',   # Hot Pink
    'X': '#A9A9A9',      # Dark Gray
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo',
        'ADP': 'Preposición',
        'ADV': 'Adverbio',
        'AUX': 'Auxiliar',
        'CCONJ': 'Conjunción Coordinante',
        'DET': 'Determinante',
        'INTJ': 'Interjección',
        'NOUN': 'Sustantivo',
        'NUM': 'Número',
        'PART': 'Partícula',
        'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio',
        'SCONJ': 'Conjunción Subordinante',
        'SYM': 'Símbolo',
        'VERB': 'Verbo',
        'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective',
        'ADP': 'Preposition',
        'ADV': 'Adverb',
        'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction',
        'DET': 'Determiner',
        'INTJ': 'Interjection',
        'NOUN': 'Noun',
        'NUM': 'Number',
        'PART': 'Particle',
        'PRON': 'Pronoun',
        'PROPN': 'Proper Noun',
        'SCONJ': 'Subordinating Conjunction',
        'SYM': 'Symbol',
        'VERB': 'Verb',
        'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif',
        'ADP': 'Préposition',
        'ADV': 'Adverbe',
        'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination',
        'DET': 'Déterminant',
        'INTJ': 'Interjection',
        'NOUN': 'Nom',
        'NUM': 'Nombre',
        'PART': 'Particule',
        'PRON': 'Pronom',
        'PROPN': 'Nom Propre',
        'SCONJ': 'Conjonction de Subordination',
        'SYM': 'Symbole',
        'VERB': 'Verbe',
        'X': 'Autre',
    }
}
########################################################################################################################################

# Definimos las etiquetas y colores para cada idioma
ENTITY_LABELS = {
    'es': {
        "Personas": "lightblue",
        "Conceptos": "lightgreen",
        "Lugares": "lightcoral",
        "Fechas": "lightyellow"
    },
    'en': {
        "People": "lightblue",
        "Concepts": "lightgreen",
        "Places": "lightcoral",
        "Dates": "lightyellow"
    },
    'fr': {
        "Personnes": "lightblue",
        "Concepts": "lightgreen",
        "Lieux": "lightcoral",
        "Dates": "lightyellow"
    }
}

#########################################################################################################
def count_pos(doc):
    return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')

#####################################################################################################################

def create_semantic_graph(doc, lang):
    G = nx.Graph()
    word_freq = defaultdict(int)
    lemma_to_word = {}
    lemma_to_pos = {}

    # Count frequencies of lemmas and map lemmas to their most common word form and POS
    for token in doc:
        if token.pos_ in ['NOUN', 'VERB']:
            lemma = token.lemma_.lower()
            word_freq[lemma] += 1
            if lemma not in lemma_to_word or token.text.lower() == lemma:
                lemma_to_word[lemma] = token.text
            lemma_to_pos[lemma] = token.pos_

    # Get top 20 most frequent lemmas
    top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]

    # Add nodes
    for lemma in top_lemmas:
        word = lemma_to_word[lemma]
        G.add_node(word, pos=lemma_to_pos[lemma])

    # Add edges
    for token in doc:
        if token.lemma_.lower() in top_lemmas:
            if token.head.lemma_.lower() in top_lemmas:
                source = lemma_to_word[token.lemma_.lower()]
                target = lemma_to_word[token.head.lemma_.lower()]
                if source != target:  # Avoid self-loops
                    G.add_edge(source, target, label=token.dep_)

    return G, word_freq

############################################################################################################################################

def visualize_semantic_relations(doc, lang):
    G = nx.Graph()
    word_freq = defaultdict(int)
    lemma_to_word = {}
    lemma_to_pos = {}

    # Count frequencies of lemmas and map lemmas to their most common word form and POS
    for token in doc:
        if token.pos_ in ['NOUN', 'VERB']:
            lemma = token.lemma_.lower()
            word_freq[lemma] += 1
            if lemma not in lemma_to_word or token.text.lower() == lemma:
                lemma_to_word[lemma] = token.text
            lemma_to_pos[lemma] = token.pos_

    # Get top 20 most frequent lemmas
    top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]

    # Add nodes
    for lemma in top_lemmas:
        word = lemma_to_word[lemma]
        G.add_node(word, pos=lemma_to_pos[lemma])

    # Add edges
    for token in doc:
        if token.lemma_.lower() in top_lemmas:
            if token.head.lemma_.lower() in top_lemmas:
                source = lemma_to_word[token.lemma_.lower()]
                target = lemma_to_word[token.head.lemma_.lower()]
                if source != target:  # Avoid self-loops
                    G.add_edge(source, target, label=token.dep_)

    fig, ax = plt.subplots(figsize=(36, 27))
    pos = nx.spring_layout(G, k=0.7, iterations=50)

    node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]

    nx.draw(G, pos, node_color=node_colors, with_labels=True, 
            node_size=10000, 
            font_size=16, 
            font_weight='bold', 
            arrows=True, 
            arrowsize=30, 
            width=3, 
            edge_color='gray',
            ax=ax)

    edge_labels = nx.get_edge_attributes(G, 'label')
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax)

    title = {
        'es': "Relaciones Semánticas Relevantes",
        'en': "Relevant Semantic Relations",
        'fr': "Relations Sémantiques Pertinentes"
    }
    ax.set_title(title[lang], fontsize=24, fontweight='bold')
    ax.axis('off')

    legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none', 
                       label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
                       for pos in ['NOUN', 'VERB']]
    ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16)

    return fig

############################################################################################################################################
def identify_and_contextualize_entities(doc, lang):
    entities = []
    for ent in doc.ents:
        # Obtener el contexto (3 palabras antes y después de la entidad)
        start = max(0, ent.start - 3)
        end = min(len(doc), ent.end + 3)
        context = doc[start:end].text
        
        entities.append({
            'text': ent.text,
            'label': ent.label_,
            'start': ent.start,
            'end': ent.end,
            'context': context
        })
    
    # Identificar conceptos clave (usando sustantivos y verbos más frecuentes)
    word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
    key_concepts = word_freq.most_common(10)  # Top 10 conceptos clave
    
    return entities, key_concepts


############################################################################################################################################
def perform_semantic_analysis(text, nlp, lang):
    doc = nlp(text)

    # Identificar entidades y conceptos clave
    entities, key_concepts = identify_and_contextualize_entities(doc, lang)

    # Visualizar relaciones semánticas
    relations_graph = visualize_semantic_relations(doc, lang)
    
    # Imprimir entidades para depuración
    print(f"Entidades encontradas ({lang}):")
    for ent in doc.ents:
        print(f"{ent.text} - {ent.label_}")
    
    relations_graph = visualize_semantic_relations(doc, lang)
    return {
        'entities': entities,
        'key_concepts': key_concepts,
        'relations_graph': relations_graph
    }

__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS', 'identify_and_contextualize_entities']