File size: 20,094 Bytes
46a1213 01cc880 ac10537 01cc880 ff68008 bed8651 ff68008 bed8651 ff68008 bed8651 ff68008 bed8651 ff68008 bed8651 ff68008 bed8651 ff68008 4fe0b02 ff68008 4fe0b02 ff68008 ea9f452 ff68008 4272d5a ea9f452 4272d5a ea9f452 4272d5a ff68008 0055018 ff68008 4272d5a e7db8e8 ea9f452 bed8651 e7db8e8 bed8651 e7db8e8 bed8651 4272d5a bed8651 e7db8e8 ea9f452 4272d5a ea9f452 4272d5a ea9f452 bed8651 ea9f452 e7db8e8 ea9f452 e7db8e8 ff68008 0055018 ff68008 01cc880 ff68008 01cc880 ff68008 01cc880 ff68008 0055018 4272d5a 0055018 4272d5a 0055018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
#v3/modules/studentact/current_situation_analysis.py
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx
import seaborn as sns
from collections import Counter
from itertools import combinations
import numpy as np
import matplotlib.patches as patches
import logging
logger = logging.getLogger(__name__)
def analyze_text_dimensions(doc):
"""
Analiza las dimensiones principales del texto.
Args:
doc: Documento procesado por spaCy
Returns:
dict: M茅tricas del an谩lisis
"""
try:
# An谩lisis de vocabulario
vocab_score = analyze_vocabulary_diversity(doc)
vocab_normalized = normalize_score(
value=vocab_score,
optimal_connections=len(doc) * 0.4 # 40% del total de palabras como conexiones 贸ptimas
)
# An谩lisis de estructura
struct_score = analyze_structure(doc)
struct_normalized = normalize_score(
value=struct_score,
optimal_length=20 # Longitud 贸ptima promedio de oraci贸n
)
# An谩lisis de cohesi贸n
cohesion_score = analyze_cohesion(doc)
cohesion_normalized = normalize_score(
value=cohesion_score,
optimal_value=0.7 # 70% de cohesi贸n como valor 贸ptimo
)
# An谩lisis de claridad
clarity_score = analyze_clarity(doc)
clarity_normalized = normalize_score(
value=clarity_score,
optimal_value=0.8 # 80% de claridad como valor 贸ptimo
)
return {
'vocabulary': {
'raw_score': vocab_score,
'normalized_score': vocab_normalized
},
'structure': {
'raw_score': struct_score,
'normalized_score': struct_normalized
},
'cohesion': {
'raw_score': cohesion_score,
'normalized_score': cohesion_normalized
},
'clarity': {
'raw_score': clarity_score,
'normalized_score': clarity_normalized
}
}
except Exception as e:
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
raise
def analyze_clarity(doc):
"""
Analiza la claridad del texto considerando m煤ltiples factores:
- Longitud y variaci贸n de oraciones
- Uso de conectores
- Complejidad estructural
- Claridad referencial
- Densidad l茅xica
"""
try:
# 1. An谩lisis de oraciones
sentences = list(doc.sents)
if not sentences:
return 0.0
# Longitud de oraciones
sentence_lengths = [len(sent) for sent in sentences]
avg_length = sum(sentence_lengths) / len(sentences)
length_variation = np.std(sentence_lengths) if len(sentences) > 1 else 0
# Penalizar oraciones muy cortas o muy largas
length_score = normalize_score(
avg_length,
optimal_length=20, # Longitud 贸ptima
range_factor=1.5 # Factor de tolerancia
)
# 2. An谩lisis de conectores
connector_count = 0
connector_types = {
'CCONJ': 0.8, # Coordinantes
'SCONJ': 1.0, # Subordinantes
'ADV': 0.6 # Adverbios conectivos
}
for token in doc:
if token.pos_ in connector_types and token.dep_ in ['cc', 'mark', 'advmod']:
connector_count += connector_types[token.pos_]
connector_score = min(1.0, connector_count / (len(sentences) * 0.8))
# 3. Complejidad estructural
clause_count = 0
for sent in sentences:
verbs = [token for token in sent if token.pos_ == 'VERB']
clause_count += len(verbs)
complexity_score = normalize_score(
clause_count / len(sentences),
optimal_value=2.0, # Promedio 贸ptimo de cl谩usulas por oraci贸n
range_factor=1.5
)
# 4. Claridad referencial
reference_score = analyze_reference_clarity(doc)
# 5. Densidad l茅xica
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
function_words = len([token for token in doc if token.pos_ not in ['NOUN', 'VERB', 'ADJ', 'ADV']])
density_score = normalize_score(
content_words / (content_words + function_words) if (content_words + function_words) > 0 else 0,
optimal_value=0.6, # 60% de palabras de contenido es 贸ptimo
range_factor=1.5
)
# Pesos para cada factor
weights = {
'length': 0.2,
'connectors': 0.2,
'complexity': 0.2,
'reference': 0.2,
'density': 0.2
}
# C谩lculo del score final ponderado
clarity_score = (
weights['length'] * length_score +
weights['connectors'] * connector_score +
weights['complexity'] * complexity_score +
weights['reference'] * reference_score +
weights['density'] * density_score
)
# Informaci贸n detallada para diagn贸stico
details = {
'length_score': length_score,
'connector_score': connector_score,
'complexity_score': complexity_score,
'reference_score': reference_score,
'density_score': density_score,
'avg_sentence_length': avg_length,
'length_variation': length_variation,
'connectors_per_sentence': connector_count / len(sentences)
}
return clarity_score, details
except Exception as e:
logger.error(f"Error en analyze_clarity: {str(e)}")
return 0.0, {}
def analyze_reference_clarity(doc):
"""
Analiza la claridad de las referencias en el texto
"""
try:
# Contar referencias anaf贸ricas
reference_count = 0
unclear_references = 0
for token in doc:
# Detectar pronombres y determinantes
if token.pos_ in ['PRON', 'DET']:
reference_count += 1
# Verificar si tiene antecedente claro
has_antecedent = False
for ancestor in token.ancestors:
if ancestor.pos_ == 'NOUN':
has_antecedent = True
break
if not has_antecedent:
unclear_references += 1
# Calcular score
if reference_count == 0:
return 1.0 # No hay referencias = claridad m谩xima
clarity = 1.0 - (unclear_references / reference_count)
return max(0.0, min(1.0, clarity))
except Exception as e:
logger.error(f"Error en analyze_reference_clarity: {str(e)}")
return 0.0
def analyze_vocabulary_diversity(doc):
"""An谩lisis mejorado de la diversidad y calidad del vocabulario"""
try:
# 1. An谩lisis b谩sico de diversidad
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
total_words = len([token for token in doc if token.is_alpha])
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
# 2. An谩lisis de registro
academic_words = 0
narrative_words = 0
technical_terms = 0
# Clasificar palabras por registro
for token in doc:
if token.is_alpha:
# Detectar t茅rminos acad茅micos/t茅cnicos
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
technical_terms += 1
# Detectar palabras narrativas
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
narrative_words += 1
# 3. An谩lisis de complejidad sint谩ctica
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
# 4. Calcular score ponderado
weights = {
'diversity': 0.3,
'technical': 0.3,
'narrative': 0.2,
'complexity': 0.2
}
scores = {
'diversity': basic_diversity,
'technical': technical_terms / total_words if total_words > 0 else 0,
'narrative': narrative_words / total_words if total_words > 0 else 0,
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
}
# Score final ponderado
final_score = sum(weights[key] * scores[key] for key in weights)
# Informaci贸n adicional para diagn贸stico
details = {
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
'scores': scores
}
return final_score, details
except Exception as e:
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
return 0.0, {}
def analyze_cohesion(doc):
"""Analiza la cohesi贸n textual"""
try:
sentences = list(doc.sents)
if len(sentences) < 2:
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n")
return 0.0
connections = 0
for i in range(len(sentences)-1):
sent1_words = {token.lemma_ for token in sentences[i]}
sent2_words = {token.lemma_ for token in sentences[i+1]}
connections += len(sent1_words.intersection(sent2_words))
# Validar que haya conexiones antes de normalizar
if connections == 0:
logger.warning("No se encontraron conexiones entre oraciones")
return 0.0
return normalize_score(connections, optimal_connections=max(5, len(sentences) * 0.2))
except Exception as e:
logger.error(f"Error en analyze_cohesion: {str(e)}")
return 0.0
def analyze_structure(doc):
"""Analiza la complejidad estructural"""
try:
if len(doc) == 0:
logger.warning("Documento vac铆o")
return 0.0
root_distances = []
for token in doc:
if token.dep_ == 'ROOT':
depths = get_dependency_depths(token)
root_distances.extend(depths)
if not root_distances:
logger.warning("No se encontraron estructuras de dependencia")
return 0.0
avg_depth = sum(root_distances) / len(root_distances)
return normalize_score(avg_depth, optimal_depth=max(3, len(doc) * 0.1))
except Exception as e:
logger.error(f"Error en analyze_structure: {str(e)}")
return 0.0
# Funciones auxiliares de an谩lisis
def get_dependency_depths(token, depth=0):
"""Obtiene las profundidades de dependencia"""
depths = [depth]
for child in token.children:
depths.extend(get_dependency_depths(child, depth + 1))
return depths
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
optimal_connections=None, optimal_depth=None):
"""
Normaliza un valor a una escala de 0-1 con manejo de casos extremos.
Args:
value: Valor a normalizar
optimal_value: Valor 贸ptimo de referencia
range_factor: Factor para ajustar el rango
optimal_length: Longitud 贸ptima (opcional)
optimal_connections: N煤mero 贸ptimo de conexiones (opcional)
optimal_depth: Profundidad 贸ptima de estructura (opcional)
Returns:
float: Valor normalizado entre 0 y 1
"""
try:
# Validar valores negativos o cero
if value < 0:
logger.warning(f"Valor negativo recibido: {value}")
return 0.0
# Manejar caso donde el valor es cero
if value == 0:
logger.warning("Valor cero recibido")
return 0.0
# Identificar el valor de referencia a usar
if optimal_depth is not None:
reference = optimal_depth
elif optimal_connections is not None:
reference = optimal_connections
elif optimal_length is not None:
reference = optimal_length
else:
reference = optimal_value
# Validar valor de referencia
if reference <= 0:
logger.warning(f"Valor de referencia inv谩lido: {reference}")
return 0.0
# Calcular diferencia y m谩xima diferencia permitida
diff = abs(value - reference)
max_diff = reference * range_factor
# Validar max_diff
if max_diff <= 0:
logger.warning(f"M谩xima diferencia inv谩lida: {max_diff}")
return 0.0
# Calcular score normalizado
score = 1.0 - min(diff / max_diff, 1.0)
# Asegurar que el resultado est茅 entre 0 y 1
return max(0.0, min(1.0, score))
except Exception as e:
logger.error(f"Error en normalize_score: {str(e)}")
return 0.0
# Funciones de generaci贸n de gr谩ficos
def generate_sentence_graphs(doc):
"""Genera visualizaciones de estructura de oraciones"""
fig, ax = plt.subplots(figsize=(10, 6))
# Implementar visualizaci贸n
plt.close()
return fig
def generate_word_connections(doc):
"""Genera red de conexiones de palabras"""
fig, ax = plt.subplots(figsize=(10, 6))
# Implementar visualizaci贸n
plt.close()
return fig
def generate_connection_paths(doc):
"""Genera patrones de conexi贸n"""
fig, ax = plt.subplots(figsize=(10, 6))
# Implementar visualizaci贸n
plt.close()
return fig
def create_vocabulary_network(doc):
"""
Genera el grafo de red de vocabulario.
"""
G = nx.Graph()
# Crear nodos para palabras significativas
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
word_freq = Counter(words)
# A帽adir nodos con tama帽o basado en frecuencia
for word, freq in word_freq.items():
G.add_node(word, size=freq)
# Crear conexiones basadas en co-ocurrencia
window_size = 5
for i in range(len(words) - window_size):
window = words[i:i+window_size]
for w1, w2 in combinations(set(window), 2):
if G.has_edge(w1, w2):
G[w1][w2]['weight'] += 1
else:
G.add_edge(w1, w2, weight=1)
# Crear visualizaci贸n
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
# Dibujar nodos
nx.draw_networkx_nodes(G, pos,
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
node_color='lightblue',
alpha=0.7)
# Dibujar conexiones
nx.draw_networkx_edges(G, pos,
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
alpha=0.5)
# A帽adir etiquetas
nx.draw_networkx_labels(G, pos)
plt.title("Red de Vocabulario")
plt.axis('off')
return fig
def create_syntax_complexity_graph(doc):
"""
Genera el diagrama de arco de complejidad sint谩ctica.
Muestra la estructura de dependencias con colores basados en la complejidad.
"""
try:
# Preparar datos para la visualizaci贸n
sentences = list(doc.sents)
if not sentences:
return None
# Crear figura para el gr谩fico
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
# Colores para diferentes niveles de profundidad
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
y_offset = 0
max_x = 0
for sent in sentences:
words = [token.text for token in sent]
x_positions = range(len(words))
max_x = max(max_x, len(words))
# Dibujar palabras
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
# A帽adir texto
for i, word in enumerate(words):
plt.annotate(word, (i, y_offset), xytext=(0, -10),
textcoords='offset points', ha='center')
# Dibujar arcos de dependencia
for token in sent:
if token.dep_ != "ROOT":
# Calcular profundidad de dependencia
depth = 0
current = token
while current.head != current:
depth += 1
current = current.head
# Determinar posiciones para el arco
start = token.i - sent[0].i
end = token.head.i - sent[0].i
# Altura del arco basada en la distancia entre palabras
height = 0.5 * abs(end - start)
# Color basado en la profundidad
color = depth_colors[min(depth, len(depth_colors)-1)]
# Crear arco
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
width=abs(end - start),
height=height,
angle=0,
theta1=0,
theta2=180,
color=color,
alpha=0.6)
ax.add_patch(arc)
y_offset -= 2
# Configurar el gr谩fico
plt.xlim(-1, max_x)
plt.ylim(y_offset - 1, 1)
plt.axis('off')
plt.title("Complejidad Sint谩ctica")
return fig
except Exception as e:
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
return None
def create_cohesion_heatmap(doc):
"""Genera un mapa de calor que muestra la cohesi贸n entre p谩rrafos/oraciones."""
try:
sentences = list(doc.sents)
n_sentences = len(sentences)
if n_sentences < 2:
return None
similarity_matrix = np.zeros((n_sentences, n_sentences))
for i in range(n_sentences):
for j in range(n_sentences):
sent1_lemmas = {token.lemma_ for token in sentences[i]
if token.is_alpha and not token.is_stop}
sent2_lemmas = {token.lemma_ for token in sentences[j]
if token.is_alpha and not token.is_stop}
if sent1_lemmas and sent2_lemmas:
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aqu铆
union = len(sent1_lemmas | sent2_lemmas) # Y aqu铆
similarity_matrix[i, j] = intersection / union if union > 0 else 0
# Crear visualizaci贸n
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(similarity_matrix,
cmap='YlOrRd',
square=True,
xticklabels=False,
yticklabels=False,
cbar_kws={'label': 'Cohesi贸n'},
ax=ax)
plt.title("Mapa de Cohesi贸n Textual")
plt.xlabel("Oraciones")
plt.ylabel("Oraciones")
plt.tight_layout()
return fig
except Exception as e:
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
return None
|