File size: 11,020 Bytes
d07ae4c
58e05a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8994e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86a22b
58e05a7
 
 
443e21a
 
 
18346b7
 
443e21a
 
 
 
 
 
18346b7
443e21a
58e05a7
 
 
 
 
 
 
8a205d6
58e05a7
 
 
d40ecdf
58e05a7
 
18346b7
 
 
 
 
58e05a7
8a205d6
58e05a7
 
 
 
 
8a205d6
58e05a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a205d6
58e05a7
 
 
 
18346b7
8a205d6
18346b7
f061e23
18346b7
 
 
 
8a205d6
18346b7
 
 
 
8a205d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4ed7b
bba0443
58e05a7
443e21a
 
7224a0f
8a205d6
f15f421
31da054
ce4ed7b
31da054
 
 
 
 
 
 
 
 
8994e27
31da054
 
 
8994e27
31da054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15f421
31da054
 
 
 
 
 
 
ce4ed7b
31da054
 
 
 
 
 
 
 
 
 
58e05a7
 
31da054
ce4ed7b
31da054
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# modules/studentact/current_situation_interface.py

import streamlit as st
import logging
from ..utils.widget_utils import generate_unique_key
import matplotlib.pyplot as plt
import numpy as np
from ..database.current_situation_mongo_db import store_current_situation_result

from .current_situation_analysis import (
    analyze_text_dimensions, 
    analyze_clarity,
    analyze_vocabulary_diversity, 
    analyze_cohesion,
    analyze_structure,
    get_dependency_depths, 
    normalize_score, 
    generate_sentence_graphs, 
    generate_word_connections, 
    generate_connection_paths,
    create_vocabulary_network, 
    create_syntax_complexity_graph, 
    create_cohesion_heatmap,     
)

# Configuración del estilo de matplotlib para el gráfico de radar
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.grid'] = True
plt.rcParams['axes.spines.top'] = False
plt.rcParams['axes.spines.right'] = False

logger = logging.getLogger(__name__)
####################################

TEXT_TYPES = {
    'academic_article': {
        'name': 'Artículo Académico',
        'thresholds': {
            'vocabulary': {'min': 0.70, 'target': 0.85},
            'structure': {'min': 0.75, 'target': 0.90},
            'cohesion': {'min': 0.65, 'target': 0.80},
            'clarity': {'min': 0.70, 'target': 0.85}
        }
    },
    'student_essay': {
        'name': 'Trabajo Universitario',
        'thresholds': {
            'vocabulary': {'min': 0.60, 'target': 0.75},
            'structure': {'min': 0.65, 'target': 0.80},
            'cohesion': {'min': 0.55, 'target': 0.70},
            'clarity': {'min': 0.60, 'target': 0.75}
        }
    },
    'general_communication': {
        'name': 'Comunicación General',
        'thresholds': {
            'vocabulary': {'min': 0.50, 'target': 0.65},
            'structure': {'min': 0.55, 'target': 0.70},
            'cohesion': {'min': 0.45, 'target': 0.60},
            'clarity': {'min': 0.50, 'target': 0.65}
        }
    }
}
####################################
def display_current_situation_interface(lang_code, nlp_models, current_situation_t):
    """
    Interfaz simplificada con gráfico de radar para visualizar métricas.
    """
    # Inicializar estados si no existen
    if 'text_input' not in st.session_state:
        st.session_state.text_input = ""
    if 'text_area' not in st.session_state:  # Añadir inicialización de text_area
        st.session_state.text_area = ""
    if 'show_results' not in st.session_state:
        st.session_state.show_results = False
    if 'current_doc' not in st.session_state:
        st.session_state.current_doc = None
    if 'current_metrics' not in st.session_state:
        st.session_state.current_metrics = None
        
    try:
        # Container principal con dos columnas
        with st.container():
            input_col, results_col = st.columns([1,2])
            
            with input_col:
                # Text area con manejo de estado
                text_input = st.text_area(
                    current_situation_t.get('input_prompt', 'Escribe tu texto aquí'),
                    height=400,
                    key="text_area",
                    value=st.session_state.text_input,
                    help=current_situation_t.get('help', 'Ayuda sobre el campo de texto')
                )
                
                # Función para manejar cambios de texto
                if text_input != st.session_state.text_input:
                    st.session_state.text_input = text_input
                    st.session_state.show_results = False
                
                if st.button(
                    current_situation_t.get('analyze_button', 'Analizar texto'),
                    type="primary",
                    disabled=not text_input.strip(),
                    use_container_width=True,
                ):
                    try:
                        with st.spinner(current_situation_t.get('processing', 'Analizando...')):
                            doc = nlp_models[lang_code](text_input)
                            metrics = analyze_text_dimensions(doc)
                            
                            storage_success = store_current_situation_result(
                                username=st.session_state.username,
                                text=text_input,
                                metrics=metrics,
                                feedback=None
                            )
                            
                            if not storage_success:
                                logger.warning("No se pudo guardar el análisis en la base de datos")
                            
                            st.session_state.current_doc = doc
                            st.session_state.current_metrics = metrics
                            st.session_state.show_results = True
                            
                    except Exception as e:
                        logger.error(f"Error en análisis: {str(e)}")
                        st.error(current_situation_t.get('analysis_error', 'Error analyzing text'))
            
            # Mostrar resultados en la columna derecha
            with results_col:
                if st.session_state.show_results and st.session_state.current_metrics is not None:
                    # Primero los radio buttons para tipo de texto
                    st.markdown(f"### {current_situation_t.get('text_type_header', 'Tipo de texto')}")
                    text_type = st.radio(
                        "Selecciona el tipo de texto",
                        options=list(TEXT_TYPES.keys()),
                        format_func=lambda x: TEXT_TYPES[x]['name'],
                        horizontal=True,
                        key="text_type_radio",
                        help=current_situation_t.get('text_type_help', 'Select the type of text to adjust the evaluation criteria')
                    )
                    
                    st.session_state.current_text_type = text_type
                    
                    # Obtener umbrales basados en el tipo de texto
                    thresholds = TEXT_TYPES[text_type]['thresholds']
                    
                    # Preparar configuración de métricas para el gráfico de radar
                    metrics_config = [
                        {
                            'label': current_situation_t.get('vocabulary_label', 'Vocabulario'),
                            'value': st.session_state.current_metrics['vocabulary'],
                            'thresholds': {
                                'min': thresholds['vocabulary']['min'],
                                'target': thresholds['vocabulary']['target']
                            }
                        },
                        {
                            'label': current_situation_t.get('structure_label', 'Estructura'),
                            'value': st.session_state.current_metrics['structure'],
                            'thresholds': {
                                'min': thresholds['structure']['min'],
                                'target': thresholds['structure']['target']
                            }
                        },
                        {
                            'label': current_situation_t.get('cohesion_label', 'Cohesión'),
                            'value': st.session_state.current_metrics['cohesion'],
                            'thresholds': {
                                'min': thresholds['cohesion']['min'],
                                'target': thresholds['cohesion']['target']
                            }
                        },
                        {
                            'label': current_situation_t.get('clarity_label', 'Claridad'),
                            'value': st.session_state.current_metrics['clarity'],
                            'thresholds': {
                                'min': thresholds['clarity']['min'],
                                'target': thresholds['clarity']['target']
                            }
                        }
                    ]
                    
                    # Usar la función display_radar_chart que ya existe
                    display_radar_chart(
                        metrics_config=metrics_config,
                        thresholds=thresholds,
                        current_situation_t=current_situation_t
                    )

    except Exception as e:
        logger.error(f"Error en interfaz principal: {str(e)}")
        st.error(current_situation_t.get('error_chart', 'Error al mostrar el gráfico'))


######################################
def display_radar_chart(metrics_config, thresholds, current_situation_t):
    """
    Muestra el gráfico radar con los resultados.
    """
    try:
        # Preparar datos para el gráfico
        categories = [m['label'] for m in metrics_config]
        values_user = [m['value'] for m in metrics_config]
        min_values = [m['thresholds']['min'] for m in metrics_config]
        target_values = [m['thresholds']['target'] for m in metrics_config]

        # Crear y configurar gráfico
        fig = plt.figure(figsize=(8, 8))
        ax = fig.add_subplot(111, projection='polar')

        # Configurar radar
        angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
        angles += angles[:1]
        values_user += values_user[:1]
        min_values += min_values[:1]
        target_values += target_values[:1]

        # Configurar ejes
        ax.set_xticks(angles[:-1])
        ax.set_xticklabels(categories, fontsize=10)
        circle_ticks = np.arange(0, 1.1, 0.2)
        ax.set_yticks(circle_ticks)
        ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
        ax.set_ylim(0, 1)

        # Dibujar áreas de umbrales
        ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5)
        ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5)
        ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
        ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)

        # Dibujar valores del usuario
        ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura')
        ax.fill(angles, values_user, '#3498db', alpha=0.2)

        # Ajustar leyenda
        ax.legend(
            loc='upper right',
            bbox_to_anchor=(1.3, 1.1),
            fontsize=10,
            frameon=True,
            facecolor='white',
            edgecolor='none',
            shadow=True
        )

        plt.tight_layout()
        st.pyplot(fig)
        plt.close()

    except Exception as e:
        logger.error(f"Error mostrando gráfico radar: {str(e)}")
        st.error(current_situation_t['error_chart'])
#######################################