File size: 8,609 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
import logging
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content

logger = logging.getLogger(__name__)
semantic_float_init()

def get_translation(t, key, default):
    return t.get(key, default)

def display_semantic_interface(lang_code, nlp_models, t):
    # Inicialización del chatbot y el historial del chat
    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')
    if 'semantic_chat_history' not in st.session_state:
        st.session_state.semantic_chat_history = []

    st.markdown("""

        <style>

        .chat-container {

            height: 400px;

            overflow-y: auto;

            border: 1px solid #ddd;

            padding: 10px;

            margin-bottom: 10px;

        }

        .chat-message {

            margin-bottom: 10px;

            padding: 5px;

            border-radius: 5px;

        }

        .user-message {

            background-color: #e6f3ff;

            text-align: right;

        }

        .assistant-message {

            background-color: #f0f0f0;

            text-align: left;

        }

        .semantic-float {

            position: fixed;

            right: 20px;

            top: 20px;

            width: 40%;

            height: 60%;

            z-index: 1000;

            background-color: white;

            border: 1px solid #ddd;

            border-radius: 5px;

            padding: 10px;

            overflow-y: auto;

        }

        </style>

    """, unsafe_allow_html=True)

    st.markdown(f"<div class='semantic-initial-message'>{t['semantic_initial_message']}</div>", unsafe_allow_html=True)

    tab1, tab2 = st.tabs(["Upload", "Analyze"])

    with tab1:
        st.subheader("File Management")
        uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
        if uploaded_file is not None:
            file_contents = uploaded_file.getvalue().decode('utf-8')
            if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
                st.success(f"File {uploaded_file.name} uploaded and saved successfully")
            else:
                st.error("Error uploading file")

        st.markdown("---")
        st.subheader("Manage Uploaded Files")
        user_files = get_user_files(st.session_state.username, 'semantic')
        if user_files:
            for file in user_files:
                col1, col2 = st.columns([3, 1])
                with col1:
                    st.write(file['file_name'])
                with col2:
                    if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
                        if delete_file(st.session_state.username, file['file_name'], 'semantic'):
                            st.success(f"File {file['file_name']} deleted successfully")
                            st.rerun()
                        else:
                            st.error(f"Error deleting file {file['file_name']}")
        else:
            st.info("No files uploaded yet.")

    with tab2:
        st.subheader("Semantic Analysis")

        st.subheader("File Selection and Analysis")
        user_files = get_user_files(st.session_state.username, 'semantic')
        file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
        selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))

        if st.button("Analyze Document"):
            if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
                file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
                if file_contents:
                    with st.spinner("Analyzing..."):
                        try:
                            nlp_model = nlp_models[lang_code]
                            concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
                            st.session_state.concept_graph = concept_graph
                            st.session_state.entity_graph = entity_graph
                            st.session_state.key_concepts = key_concepts
                            st.session_state.current_file_contents = file_contents
                            st.success("Analysis completed successfully")

                            # Actualizar el grafo flotante
                            graph_content = f"""

                                <h3>Key Concepts:</h3>

                                <p>{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}</p>

                                <img src="data:image/png;base64,{concept_graph}" alt="Concept Graph" style="width:100%"/>

                            """
                            if 'graph_id' not in st.session_state:
                                st.session_state.graph_id = float_graph(graph_content, width="40%", height="60%", position="top-right")
                            else:
                                update_float_content(st.session_state.graph_id, graph_content)
                            toggle_float_visibility(st.session_state.graph_id, True)
                            st.session_state.graph_visible = True
                        except Exception as e:
                            logger.error(f"Error during analysis: {str(e)}")
                            st.error(f"Error during analysis: {str(e)}")
                            st.session_state.concept_graph = None
                            st.session_state.entity_graph = None
                            st.session_state.key_concepts = []
                else:
                    st.error("Error loading file contents")
            else:
                st.error("Please select a file to analyze")

        st.subheader("Chat with AI")
        chat_container = st.container()
        with chat_container:
            st.markdown('<div class="chat-container">', unsafe_allow_html=True)
            for message in st.session_state.semantic_chat_history:
                message_class = "user-message" if message["role"] == "user" else "assistant-message"
                st.markdown(f'<div class="chat-message {message_class}">{message["content"]}</div>', unsafe_allow_html=True)
            st.markdown('</div>', unsafe_allow_html=True)

        user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
        col1, col2 = st.columns([3, 1])
        with col1:
            send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
        with col2:
            clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))

        if send_button and user_input:
            st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
            if user_input.startswith('/analyze_current'):
                response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
            else:
                response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
            st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
            st.rerun()

        if clear_button:
            st.session_state.semantic_chat_history = []
            st.rerun()

    # Botón para alternar la visibilidad del grafo flotante
    if 'graph_id' in st.session_state:
        if st.button("Toggle Graph Visibility"):
            toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True))
            st.session_state.graph_visible = not st.session_state.get('graph_visible', True)